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Abstract

A nonlinear regression problem of the type typically encountered in behav-
ioral sciences, is considered. Here, one wishes to make a nonlinear prediction
of real-valued outcome, using latent/unobserved predictor (independent, or ex-
planatory) variable. Instead of actual predictor, one observes either a noisy
version of it, or several indicators for it. These indicators could, for example,
correspond to questionnaire items in standard psychometric measurement scale.
Furthermore, it is assumed that little is known about the functional form of
nonlinear regression function between the outcome and set of predictors.

The problem is approached by combining a standard latent variable model,
Factor analysis, with regression based on Gaussian processes, and with new
developments allowing ”error-in-variables”, or alternatively ”noisy” predictors.
Gaussian process regression takes statistical inference directly to the infinite-
dimensional space of functions, and has gained increasing attention lately due
to growing availability of computational capacities. This approach has been
found effective when predictors are properly observed, with little measurement
error. However, it turns out to be difficult to extend to the case of imprecisely
observed predictors. Measurement error in variables is a rule rather than ex-
ception in behavioral sciences. In the current work, this problem is solved with
an approach tailored to the needs of behavioral sciences. Presented solution
can be used in corresponding situations in other fields of science.
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Abstrakti (In Finnish)

Tutkimme, mm. käyttäytymistieteissä esiintyvää, epälineaarista regressio-ongelmaa.
Tavoitteena on tehdä epälineaarinen ennuste reaaliarvoiselle vastemuuttujalle
käyttäen piileviä/ei-havaittuja ennustemuuttujia (”riippumattomia”/”selittäviä”
muuttujia). Todellisen ennustemuuttujan sĳaan, havaitaan vain kohinainen in-
dikaattori, tai useita indikaattoreita. Nämä indikaattorit saattaisivat vastata
esimerkiksi kyselylomakkeen kysymyksiä tunnetussa psykometrisessä mittarissa.
Lisäksi oletetaan että vastemuuttujan ja ennustemuuttujien epälineaarisesta
yhteydestä tiedetään hyvin vähän.

Yllä kuvattua ongelmaa lähestytään yhdistämällä standardi piilomuuttuja-
malli, Faktorianalyysi, Gaussisiin prosesseihin pohjaavaan regressiomenetelmään,
sekä tällä alueella hiljattain saavutettuihin kohinaisten muuttujien mallintamisen
edistysaskeliin. Regressio Gaussisilla prosesseilla vie tilastollisen päättelyn suo-
raan ääretönulotteiseen funktioavaruuteen, ja on viimeaikoina, kasvavan laskan-
nallisen kapasiteetin myötä, herättänyt lisääntyvissä määrin kiinnostusta. Tämä
lähestyminen on osoittautunut tehokkaaksi, kun ennustemuuttujat havaitaan
virheettömästi, tai lähes virheettömästi. Se on kuitenkin osoittautunut han-
kalaksi laajentaa epätarkasti havaittujen ennustemuuttujien tapaukseen. Mit-
tausvirhe muuttujissa on ennemmin sääntö kuin poikkeus käyttäytymistieteissä.
Tässä työssä epätarkkojen havaintojen ongelma ratkaistaan käyttäytymistietei-
den tarpeisiin räätälöidyllä lähestymisellä. Esitetty ratkaisu on sovellettavissa
muiden alojen vastaaviin tilanteisiin.
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1 Introduction

1.1 The behavioral setting

Personality is a time-average of behavior. This construct has shown success in
predicting future behavior, and clear associations with health outcomes, such
as atherosclerosis and depression (John, Robins & Pervin 2008; Hintsanen, et
al., 2009; Puttonen et al., 2008). This thesis is an attempt for a mathematical
solution to some central challenges that arise when one tries to predict some
outcome from current behavioral measures (e.g. Cloninger, Przybeck, Svrakic
& Wetzel, 1993; Costa & McCrae, 1985).

Personality, or typical/average behavior of an individual, is often described
as normally distributed deviations from the population average of behavior. It
is measured by asking several questions that are thought to reflect between indi-
vidual variation in some latent (hidden) trait. A latent trait could, for example,
describe how enthusiastic one is about various social interactions. Depending
on the theory, there are 3 to 7 separate traits, or dimensions, where individuals
gain values approximately according to a normal distribution. Any given trait
alone is an incomplete description of the behavioral profile of an individual, and
may manifest in different behavioral outcomes according to values of the other
traits/dimensions. Thus, effects or outcomes, depend on interactions between
these dimensions (real-valued variables in practice). In addition, dependence is
unlikely to be monotonic. Instead, it is typical that both extremes of any trait
are somehow problematic, because individual with extreme value, high or low,
behaves very differently from the general population, with respect to this trait.
Deviant behavior may result in adjustment difficulties, which in turn may lead
to psychosocial stress and pernicious habits.

To collect the methodological implications so far, modeling of behavioral
outcomes with personality measures requires a nonlinear regression model with
several, highly interacting, independent variables, or dimensions. However, one
rarely has very good intuition to functional shapes of these nonlinearities and
interactions. Hence, it would be advantageous to be able to learn these from the
data. It is plausible to assume that outcomes, like depression or atherosclerosis
in population, depend on these traits in a continuous manner, if at all. Thus,
an assumption of continuity could be used to smooth out the dependence of
outcome Y on behavioral traits X = (X1, . . . , Xd), that is to estimate the
conditional expectation of Y given X, E[Y |X]. Here, and whenever we wish to
emphasize this distinction, capital letters are used to denote random variables,
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and corresponding lower-case letters denote their observed values. Rd := R ×
R× . . .× R (d-copies) is a standard d-dimensional Euclidian space. A := B is
used to define A as B.

Nonlinear regression, with a minimal assumption of continuity, can be based
on Gaussian stochastic processes (Rasmussen & Williams, 2006). Third chapter
of this thesis will describe how this is done, and why it might be an efficient
approach. Second chapter is devoted to introducing Gaussian stochastic pro-
cesses, or alternatively Gaussian fields. Intuitive idea behind this approach is
to set up a random field indexed by personality dimensions, condition it on the
observations, and then study how value of the field (distribution of outcome
variable) varies in different parts of the indexing space (behavioral traits, in-
dependent variables). As the measured values of the behavioral traits for two
individuals represent the multidimensional distance between their behavior, it
is natural to think of outcome as a random field indexed by the traits (get-
ting values in Rd). Thus, the outcome is modeled as a variable whose mean
indicates the typical value for those with a given profile/configuration of be-
havioral traits, and whose variance corresponds to between individual variation
and measurement error in outcome.

While such approach have been previously used to solve problems in the
fields of Machine learning and Geology, naïve approach to Gaussian process
regression (GPR) does not work well for behavioral assessment. Observations
from the indexing variable cannot be obtained without significant amounts of
observation error, also referred as measurement error. It will be shown in the
chapter three, that this brakes down the standard approach. Error-in-variables
setting has been listed as open challenges of GPR-research (Rasmussen &
Williams, 2006). Recently, an attempt for work-around was suggested for this
problem (Girard, 2004; Dallaire, Besse & Chaib-draa, 2009), and we will also
utilize it in the chapter five. However, this solution can be enhanced with a
more direct estimate for the measurement error variance. Such an estimate will
be first derived in chapter four, using a psychometric measurement framework
(e.g. Tarkkonen & Vehkalahti, 2005). Chapters five and six collect all the
above pieces and constructs a data-driven (assumption deprived) non-linear
regression/smoothing method for the behavioral outcomes.

1.2 Mathematical background

Necessary background material for this work consists of the measure theoretic
probability and linear algebra, as taught at the University level. Some famil-
iarity with statistics is helpful also. To activate memory of the reader, and
to review some notation, we briefly cover few standard concepts. A collection,
(Ω,F , P ), of the set Ω, its σ-algebra F , and a probability measure P on F ,
is called a probability space. Sometimes an equivalent term "σ-field" is used,
instead of σ-algebra. Both refer to a collection of sets that includes an empty
set and is closed under complements and countable unions of its members. σ-

11



algebra is generated by the collection of sets τ , when it is the smallest collection
of sets that, both, is a σ-algebra and contains all sets in τ . When τ is a topology,
that is collection all open sets of the space, σ-algebra generated by τ is called
the Borel σ-algebra, and denoted as B.

A function X : Ω → Rd is F -measurable if for all Borel sets B ∈ B (or
equivalently, for all open sets B)

X−1(B) := {ω ∈ Ω;X(ω) ∈ B} ∈ F .

F -measurable function is a random variable. Here we stick with real-valued
random variables, but range of X does not need to be real-valued space in
general probability theory. σ-algebra generated by X is the smallest σ-algebra
on Ω that contains all sets {X−1(B);B ∈ B}. We say that any map X (ran-
dom variable or not) is a measurable map from measurable space (Ω,F) to
another measurable space (Ω′,F ′) if X−1(B) ∈ F for all B ∈ F ′. Here, Ω
and Ω′ are sets, and F and F ′ are σ-algebras on them. Often we leave mea-
surable spaces undefined when they are clear from the context, or statement
generalizes to any space, and just speak of measurable maps. For real-valued
sets, associated σ-algebra is always taken to be their Borel σ-algebra. Compo-
sitions, sums, subtractions, products, divisions, infimum, supremum and limit
infimum/supremum of measurable maps are all again measurable maps (e.g.
Klenke, 2008, Chap. 1). Notice that we have not defined Ω and it may be al-
most any set. Here, we will soon face a situation where Ω is a set of functions
from T ⊂ R

n to one-dimensional real-space R.
Every random variable X induces a probability measure on the set where

it gets values. If X : Ω→ Rd, then the measure

(1.1) µX(B) := PX(B) := (P ◦X−1)(B) = P (X−1(B)), B ∈ B

defines the distribution of X. Expectation E[X] of X is the integral of X with
respect to measure µX , that is

(1.2) E[X] :=
∫

Ω

X(ω)dP (ω) =
∫

Rd

xdµX(x).

Indicator function, ω 7→ 1B(ω) ∈ {0, 1}, gains a value 1 when ω ∈ B, and 0
otherwise. Integral of X over the set B can be shortly expressed as E[1BX]
(characteristic function, χB, plays the same role in Analysis, but refers to dif-
ferent function in Probability theory). Note that it is standard practice to omit
the argument ω of random variable X from the notations, while it is always
implicitly present when speaking of random variables, or vectors. Above con-
cepts, as well as the concepts like conditional expectation, should be familiar
to the reader. The rest of the thesis builds on them.

The conditional expectation can be defined via Radon-Nikodym theorem.
A measure ν is said to be absolutely continuous with respect to measure µ, if
for all A ∈ F , ν[A] = 0 always when µ[A] = 0. This is denoted as ν ≪ µ. One
form of the Radon-Nikodym theorem states the following
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Theorem 1.1 (Radon-Nikodym theorem). If, and only if, ν ≪ µ, then

ν[A] =
∫

A

Z(ω)dµ[ω], A ∈ F ,

for some almost surely unique measurable map Z : Ω→ R ∪ {∞}.

Proof. See e.g. corollary 7.34 in (Klenke, 2008).

�

Now, if G is a sub-σ-algebra ofF , for any positive random variableX, we can
set ν[A] := E[X1A] and µ[A] := P [A|G] = P [A] for all A ∈ G. Then, E[X1A] =
E[Z1A], where Z is G-measurable random variable. From this, Kolmogorov
made a natural definition: Z =: E[X|G]. To see that this is natural, notice
that E[X|G] is random until we have observed some event A ∈ G. When A
has happened, we want the conditional expectation to refer to expectation of
events within the set A, that is, expectation given that A is already known.
Extension of the definition to general random variables, instead of positive ones,
is straightforward.

Although, previous knowledge of Lp-spaces is not necessary, we sometimes
refer to them. When p ≥ 1 and E[|X|p] < ∞, random variable X is said to
belong to Lp-space. The size of this space depends on Ω, F and P , and it is
often referred as Lp(Ω,F , P ). Lp-spaces are Banach-spaces, and L2 is an inner
product (Hilbert) space, with inner product 〈X, Y 〉 := E[XY ] (Klenke, 2008,
chap. 7). If Xn → X as n → ∞, and Xn ∈ Lp(Ω,F , P ) for all n, then also
X ∈ Lp(Ω,F , P ). Here, the convergence is with respect to Lp-norm ‖ · ‖p
defined as ‖ X ‖p:= E[|X|p]1/p. This is a general property of Banach-spaces.
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2 Gaussian random fields

2.1 Stochastic process

We begin by defining a stochastic process.

Definition 2.1 (Stochastic process). Stochastic process is a parameterized col-
lection of random variables {Yt : Ω → Rk; t ∈ T} =: {Yt} defined on a proba-
bility space (Ω,F , P ) and assuming values in Rk.

T could be fairly general manifold (see e.g. Adler & Taylor, 2007), but for
us it suffices that T ⊆ Rd, for some d ∈ N. Most typical interpretation is
that T represents (1-dimensional) time. We mostly consider R-valued (k = 1)
processes. While for each fixed t ∈ T , Yt provides a random variable ω 7→ Yt(ω),
for each fixed ω ∈ Ω, it provides a function t 7→ Yt(ω). Because, elements of
Ω are functions, it can be thought of as a function space. Thus, the elemental
events are functions from T to R, and more general events in event-space Ω
are sets of functions. Here the index set T ⊂ Rd will take the role of predictor,
or input, variables (behavioral traits), while values of {Yt} will represent the
outcome of interest. Typically, when T has more than one dimension, {Yt} is
also called a random field (and sheet, when d = 2). Here, we anticipate our
atypical indexing variable, by switching to x, a common symbol for predictor
in the regression context. A stochastic process {Yx} is said to be centered if
E[Yx] = 0 for all x. For reasons that become obvious later, we can concentrate
on the centered fields.

{Yx} readily defines a distribution for a set of n observations,

{(YX1 , X1), . . . , (YXn, Xn)},

but given a set of observations and a probability measure on them, can we
always construct a stochastic process that yields this finite-dimensional dis-
tribution? This knowledge is central for the modeling approach chosen here,
and it is provided by the Kolmogorov’s extension theorem, given two natural
consistency requirements.

Theorem 2.1 (Kolmogorov’s extension theorem). If µx1,...,xn is a probability
measure on Rn (or Rnk if Yt is Rk-valued), {B1 ∈ B1, . . . , Bn ∈ Bn} and

µxσ(1),...,xσ(n)
(B1 × · · · × Bn) = µx1,...,xn(Bσ−1(1) × · · · × Bσ−1(n))
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for all permutations σ on {1, . . . , n} and

µx1,...,xn(B1 × · · · ×Bn) = µx1,...,xn,xn+1,...,xn+m(B1 × · · · ×Bn × R× · · · × R︸ ︷︷ ︸
m copies

),

for all m ∈ N, then there exist a probability space (Ω,F , P ) and a stochastic
process Yx such that

µx1,...,xn(B1 × · · · × Bn) = P (Yx1 ∈ B1, · · · , Yxn ∈ Bn)

for all {x1, . . . , xn}, n ∈ N, and for all borel sets B1, . . . , Bn.

Proof. e.g. Theorem 14.36 in Klenke, (2008).

�

2.2 Gaussian process

From here onwards, (·)T denotes a transpose of a matrix or vector. For matrix-
valued input, | · |, denotes the absolute value of determinant. A real-valued
random vector X : Ω → Rd is Gaussian, or normally distributed, when it has
Lebesgue-integrable probability density function of the form

(2.1) ϕX(x) =
1

(2π)d/2|Σ|1/2 e
− 1

2
(x−µ)TΣ−1(x−µ),

or a characteristic function

(2.2) θ 7→ E[eiX
T θ] = eiµ

T θ− 1
2
θTΣθ, i =

√
−1.

Here Σ is the covariance matrix with elements

Cov[Xk, Xj] := E[(Xk − E[Xk])(Xj − E[Xj])], k, j ∈ {1, . . . , d},

and µ ∈ Rd is the mean vector E[X]. Strictly speaking, only the latter condi-
tion is required, while density function may not always exist. This distribution
is denoted as Nd(µ,Σ), and X ∼ Nd(µ,Σ) means that X is distributed ac-
cordingly. Subscript d may be dropped if the dimension is self-evident from the
context.

Gaussian variables play a fundamental role in probability theory, and they
have several desirable analytical properties. While this distribution has deep
connections to asymptotics (large samples), entropy, etc., its convenient ana-
lytical properties are central to the current work. They are the main reason
why we want to analyze Gaussian processes, a subset of stochastic processes.

Definition 2.2 (Gaussian process). An Rk-valued stochastic process {Yx} is
Gaussian if all of its finite-dimensional samples/projections (Yx1, Yx2, . . . , Yxn), n ∈
N are.
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In above definition, (Yx1, Yx2, . . . , Yxn) is Rnk-dimensional normally distributed
random variable. Dimension of x 7→ Yx is infinite, as is the case for functions
in general, but Gaussian process is defined trough its projections/samples. As
the characteristic function completely determines a distribution of the random
variable, from equation 2.2 one sees that any finite-dimensional Gaussian dis-
tribution is completely determined by its mean and covariance matrix. Zero
covariance implies independence for the jointly normally distributed random
variables. As for any sample of a real-valued process, the (i, j)-th element
of the covariance matrix is given by Cov[Yxi, Yxj ], and the mean vector by
(E[Yx1], . . . , E[Yxn]), the entire process is defined by the mean and covariance
functions,

x 7→ E[Yx] =: f(x)

and
(x, x′) 7→ Cov[Yx, Yx′] =: C(x, x′).

This is truly a nice analytic property.
Most studied Gaussian process is, without doubt, Brownian motion. Brow-

nian motion can, for example, be used to model the motion of small particles
in the fluid as a function of time t. The covariance function of this process
is C(t, t′) = min(t, t′). There exists a version of Brownian motion that al-
most surely (for almost all ω, outside of sets of measure zero) has continuous
paths, that is, elements ω ∈ Ω are continuous functions. For us, continuity
is desirable property. However, paths of Brownian motion are so ”rugged”, or
irregular, as to be (almost surely) nowhere differentiable (Klenke, 2008, chap.
21). Figure 3.1 shows one approximate path of a Brownian motion. Actually,
any function C, with

∑
ij vivjC(xi, xj) ≥ 0 for all finite sets of points {xi} and

arbitrary real coefficients vi, is a covariance function of some Gaussian process.
These functions are called non-negative definite, because for any finite sample
(x1, x2, . . . , xn) they yield positive non-negative definite covariance matrices
C := [C(xi, xj)]

n
i,j=1. A matrix C is called non-negative definite, if vTCv ≥ 0

for all v 6= 0 ∈ Rn, and positive definite if ≥ is replaced with strict inequality.

Theorem 2.2 (Covariance functions). Let C be any function C : χ × χ → R

in any index-space χ. If C satisfies the inequality

(2.3)
n∑

i=1

n∑

j=1

vivjC(xi, xj) = vTCv ≥ 0

for any sample (x1, . . . , xn) ∈ χn, and any vector (v1, . . . , vn)
T =: v ∈ Rn such

that v 6= 0, then C is a covariance function of some R-valued Gaussian process
on χ.

Proof. Consider first the situation: vTCv > 0 for all v 6= 0. For the fi-
nite sample, (x1, . . . , xn), mean 0 and covariance C define an Rn-dimensional
centered Gaussian distribution/measure. Then according to Kolmogorov’s ex-
tension theorem, there is a corresponding stochastic process. Its covariance
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function is C(·, ·), and hence for any other finite sample vTCv > 0 holds, and
the Gaussian measure exists.

If vTCv = 0 for some v 6= 0, then there is no variance in the direction
spanned by v, and no density function 2.1, but there still exists a Gaussian
distribution. This follows from the fact that the set of Gaussian distributions
is closed in L2(Ω). It contains all converging limits, or equivalently, all points
in its closure. This follows from the continuity of the Gaussian characteristic
function. If (µk,Σk) are sequence of means and covariances of a corresponding
sequence of Gaussian variables (Yk), and (µ,Σ) := (limk→∞ µk, limk→∞Σk),
then by the continuity

lim
k→∞

eiµ
T
k
θ− 1

2
θTΣkθ = eiµ

T θ− 1
2
θTΣθ,

which is again Gaussian. To see that there is a positive definite sequence con-
verging to C for which vTCv = 0, but v 6= 0, take Ck := C + Ik−1, where I is
an identity matrix, and Yk ∼ N(0, Ck). Then if v 6= 0, vT Ik−1v > 0, for any
integer k, and limk→∞ v

TCkv = vTCv = 0.

�

To gain some intuition for what a degenerate Gaussian distribution with-
out density might be, consider one-dimensional case with distribution N1(0, 1

k
)

as k tends to infinity. For every larger k, Yk is more and more certainly in
the vicinity of 0. After the limiting process, only possible distribution func-
tion is the Heaviside step-function H for which H ((−∞, x]) = 1 when x ≥
0 and H ((−∞, x]) = 0 otherwise. But, according to Radon-Nikodym theo-
rem, for there to be a Lebesgue-integrable density ϕ for which

∫ x
−∞ ϕ(x)dx =

H ((−∞, x]) and
∫

R
ϕ(x)dx = 1, where dx is the Lebesgue-measure, it should

hold that
∫
A dx = 0 implies H(A) = 0, for any set A ∈ B. This is not true for

the set A = {0}, whose Lebesgue-measure is 0, but

H(A) = H((−∞, 0])− lim
t↑0

H((−∞, t]) = 1.
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3 Gaussian process regression (GPR)

3.1 Regression

Most elementary form of regression model, is the Linear regression model. In
this model, the outcome variable Y is thought as a linear sum of appropriately
weighted predictor variables (traits) plus some error variation, ξ. That is, Y =
β0 + β1X1 + · · ·+ βdXd+ ξ := f(X) + ξ, where f : R

d → R, f(X) =
∑d
i=0 βiXi,

with X0 := 1. As already visible, the task of regression generalizes to task of
finding some function f which describes the systematic (X-dependent) part of
outcome as a function of input, or predictor, variables.

Definition 3.1 (Regression). Regression of outcome Y to input X is a process
of finding such function f that for any other function g, within some class
of functions, L(Y, f(X)) ≤ L(Y, g(X)) holds, where L is some loss function
(L ≥ 0).

The loss function L could get many forms, but most used tends to be
the squared loss L(Y, f(X)) := E[(Y − f(X))2], also known as the mean of
squared error. We will also use squared loss in the following. With this loss
function, it can be shown that optimal choice for the regression function f is
the conditional expectation of Y given X, E[Y |X] := E[Y |σ(X)], where σ(X)
denotes the σ-algebra generated by X. Let 1B be the indicator function of the
set B. In general, conditional expectation of Y given information (σ-algebra)
F is the (almost surely) unique F -measurable random variable E[Y |F ] for
which E[1BE[Y |F ]] = E[1BY ] for all B ∈ F . If Y already is F -measurable,
E[Y |F ] = Y and E[Y X|F ] = Y E[X|F ]. Furthermore, the ”Tower property”
(Klenke, 2008), or equivalently, ”Law of iterated expectation”, holds. Although,
familiarity with conditional expectation was assumed, this result is central in
the following, and we will prove it. In fact, a more general result, from which
the Tower property follows, is proved.

Theorem 3.1. If F and G are two σ-algebras, and Y a random vector, then
E[E[Y |F ]|G] = E[Y |F ∩ G].

Proof. Intersection (but not usually union) of two σ-algebras is again a σ-
algebra. Left-hand side of the equation is both, F - and G-measurable, that is,
F ∩ G-measurable. In other words, for B ∈ B, if E[E[Y |F ]|G]−1(B) ∈ F and
E[E[Y |F ]|G]−1(B) ∈ G, then E[E[Y |F ]|G]−1(B) ∈ F ∩ G. By the definition,
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E[Y |F ∩G] is that almost surely unique random vector which satisfies for every
B ∈ F ∩ G

E[1BE[Y |F ∩ G]] = E[1BY ].

We must now show that E[E[Y |F ]|G] is this same unique random vector. Let
B be any set in F ∩G. Then also B ∈ F and B ∈ G. By applying the definition
of the conditional expectation twice, it follows that

E[1BE[E[Y |F ]|G]] = E[1BE[Y |F ]] = E[1BY ].

�

The Tower property then follows from the fact that if G ⊂ F , then F ∩G =
G.

Corollary 3.1 (Tower property). If F and G are σ-algebras, and G ⊂ F , then
E[E[X|F ]|G] = E[E[X|G]|F ] = E[X|G].

Tower property shows that one may compute conditional expectations in
iterated manner. It also shows that most ”coarse” information (smaller collec-
tion of sets), or least random information (in probabilistic terms), is preserved
when taking expectations.

Next result shows that the conditional expectation of Y given X is the
optimal prediction of Y using X, in the sense of the mean of squared error.
Consider observations of the form y = f(x) + ξ that are sums of realizations of
some measurable function of a random variable X : ΩX → Rd and some error
variable Ξ : ΩΞ → R.

Theorem 3.2. If Y ∈ R is σ((X,Ξ))-measurable and X ∈ Rd is σ(X)-
measurable, with E[Y 2], E[X2] <∞, then σ(X) ⊂ σ((X,Ξ)) and

E[(Y − f(X))2] ≥ E[(Y − E[Y |σ(X)])2]

for all Lebesgue-measurable functions f .

Proof. If ΩΞ is the domain of Ξ and we identify all sets B ∈ σ(X) with
(B,ΩΞ), it is clear that we get the same σ-algebra as σ(X). On the other
hand, (B,ΩΞ) ∈ σ(X,Ξ) for all B, and hence, σ(X) ⊂ σ(X,Ξ). Since f
is measurable, composition f ◦ X = f(X) is σ(X)-measurable. From the
Jensen’s inequality, E[E[Y |σ(X)]2] ≤ E[E[Y 2|σ(X)]] = E[Y 2], giving the in-
tegrability of the conditional expectation. Because E[Y |σ(X)] and f(X) are
σ(X)-measurable, it follows from the properties of conditional expectation
that E[Y E[Y |σ(X)]] = E[E[Y E[Y |σ(X)]|σ(X)]] = E[E[Y |σ(X)]2], and that
E[f(X)Y ] = E[Y E[f(X)|σ(X)]]. Hence,

E[(Y − f(X))2]−E[(Y − E[Y |σ(X)])2]

= E[Y 2 − 2Y f(X) + f(X)2 − Y 2 + 2Y E[Y |σ(X)]−E[Y |σ(X)]2]

= E[f(X)2 − 2Y f(X) + E[Y |σ(X)]2]

= E[(f(X)− E[Y |σ(X)])2] ≥ 0
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Above theorem shows also that conditional expectation is an L2-projection
from space L2(Ω(X,Ξ), σ(X,Ξ), P(X,Ξ)) to space L2(ΩX , σ(X), PX), since it is
known from the Functional analysis that there is a unique such projection, and
it has smallest L2-distance to any Y ∈ L2(Ω(X,Ξ), σ(X,Ξ), P(X,Ξ)).

3.2 Regression with a Gaussian process

How does one then perform regression with a Gaussian process, that is, Gaus-
sian process regression (GPR). For this we need below result about the condi-
tionals of Gaussian distributions.

Theorem 3.3 (Conditional distributions of a Gaussian). Let an Rd -valued
random vector X = (X1, . . . , Xd1 , Xd1+1, . . . , Xd1+d2) be distributed as Nd(µ,C),
where d = d1 + d2, and µ = (µ1, µ2) with µ1 ∈ Rd1 and µ2 ∈ Rd2 . Let C11 ∈
Rd1×d1, C22 ∈ Rd2×d2, C12 ∈ Rd1×d2 and C21 ∈ Rd2×d1 with

C =

(
C11 C12

C21 C22

)
∈ R

d×d.

Then, conditional vector (X1, . . . , Xd1 |Xd1+1, . . . , Xd) is distributed as Nd1(µ1|2, C1|2),
where

(3.1) µ1|2 = µ1 + C12C
−1
22 ((Xd1+1, . . . , Xd)

T − µ2)

(3.2) C1|2 = C11 − C12C
−1
22 C21

Proof. The density function of multinormal (Gaussian) distribution is

ϕX(x) =
1

(2π)d/2|C|1/2 e
− 1

2
(x−µ)C−1(x−µ)T ,

where |C| is the absolute value of determinant of C, |det(C)|. Recall that,
for the determinant following equalities hold: |C−1| = 1/|C|, |C| = |CT |, and
|C||A| = |CA| when multiplication is defined. Let A be the matrix of invertible
linear transformation A : Rd → Rd. Then, according to Change of variables
formula of probability calculus, the density of Y = AX is

ϕY (y) = ϕX(A−1y)|Dy(A−1(y))|

=
1

(2π)d/2|C|1/2 e
− 1

2
(A−1y−µ)TC−1(A−1y−µ))|A−1|

=
1

(2π)d/2(|A||C||AT |)1/2
e−

1
2

(y−Aµ)TA−TC−1A−1(y−Aµ))

=
1

(2π)d/2|ACAT |1/2 e
− 1

2
(y−Aµ)T (ACAT )−1(y−Aµ)).
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Thus, Y is distributed as Nn(Aµ,ACA
T ). Now, set A =

(
Id1 −C12C

−1
22

0 Id2

)
,

where Id denotes d× d identity matrix. Make the partitions

(X(1), X(2)) = ((X1, . . . , Xd1), (Xd1+1, . . . , Xd)),

Y = (Y (1), Y (2)) =: (X(1) − C12C
−1
22 X

(2), X(2)) = AX.

Then, Y is Normally distributed with covariance

ACAT =

(
C11 − C12C

−1
22 C21 0

0 C22

)
,

implying that Y (1) and Y (2) = X(2) are independent. Thus, we can write
ϕY (y)dy = ϕY (1)(y(1))dy(1)ϕY (2)(y(2))dy(2) for the density of Y , giving ϕY (1)|Y (2)(y(1)) =

ϕY (1)|X(2)(y(1)) = ϕY (1)(y(1)). Finally, since X(1) = Y (1)+C12C
−1
22 X

(2), we get the
desired conditional density by translating above distribution with a constant
C12C

−1
22 x

(2)

(3.3) ϕX(1)|X(2)=x(2)(x(1)) = ϕY (1)(y(1) + C12C
−1
22 x

(2)).

Now, ϕX(1)|X(2)=x(2) is still Gaussian, and its covariance is given by equation 3.2,

and mean by E[y(1)] + C12C
−1
22 X

(2), which equals right side of equation 3.1.

�

With above result we can show how to perform regression with a Gaus-
sian process (assuming positive definite covariance). If we have n real-valued
outcomes (Y1, . . . , Yn), we may consider them as drawn from centered Gaus-
sian field where the field position is indicated by corresponding input/predictor
variables (X1, . . . , Xn). As every finite-dimensional sample from this process is
Gaussian, distribution of the outcome is entirely determined by the input data
and covariance function of the Gaussian process. By choosing an appropriate
covariance function for (Yi, Yj) we are essentially assuming a model for the
data. However, this assumption is not very strict. We do not assume linearity,
or other fixed functional form, but instead make an assumption regarding the
smoothness properties of the data. For example, it is often reasonable modeling
assumption that outcome values (Yi, Yj) are close to each other when predictor
variables (Xi, Xj) are. For random variables, Yi is ”close” to Yj when their co-
variance is high. Thus, we could fix the covariance function to be, for example,
the squared exponential form, often used in the literature.

Definition 3.2 (Squared exponential covariance function). If (Yi, Yj) are cen-
tered real-valued outcome random variables and (xi, xj) are corresponding R

d-
dimensional predictor/input values, set

(3.4) C(xi, xj) := E[YiYj] = ve−
1
2

(xi−xj)TW−1(xi−xj),

with positive constants v ∈ R+ and diagonal matrix W ∈ (R+ ∪{0})d×d. Then,
this function is called the Squared exponential covariance function.
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Here, ith diagonal element of W provides the characteristic length-scale
of component Xi. It describes how fastly Y can change as a function of Xi.
v gives the overall variance of Y (set C(x, x) to see this). We will use this
covariance function as an example, but lots of other useful covariance functions
exist for different situations (Rasmussen & Williams, 2006, chap. 4). Figure 3.1
demonstrates, in one-dimensional case, some realizations from this Gaussian
process for different values of W . Smaller the W is, the more rapidly process
can vary as a function of location x in the horizontal axis.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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w=0.01
w=0.1
w=1
Brownian motion

Figure 3.1. Examples of realizations (paths/fields) of Gaussian pro-
cesses: w refers to Squared exponential covariance function with param-
eters W = w and v = 1, and the latter one is realization of Brownian
motion

As we are going to make use of the Squared exponential covariance, it is
proper to show that it is a true covariance function, that is a non-negative
definite function. This can be done using the spectral representation of C. It is
immediately evident that the Squared exponential can be written as function
of single argument xi − xj . Gaussian processes with such covariance function
(and constant mean function) are stationary, that is, simultaneous transla-
tion of indices does not alter distribution. For such covariances we can denote
C(xi, xj) =: C(xi − xj), and following theorem holds.

Theorem 3.4 (Spectral representation of covariance function). A continuous
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complex-valued function C : Rd → C is non-negative definite (i.e. covariance
function) if and only if there exists a finite measure ν (ν(Rd) < ∞) on the
Borel-algebra Bd such that

(3.5) C(x) =
∫

Rd

eiλ
T xν(dλ), x ∈ R

d, i =
√
−1.

Proof. Statement of the theorem is adopted from Adler & Taylor, (2007),
but very general, english-language, proof should be found e.g. from Hewitt &
Ross, (1997), p. 293, theorem 33.3.

�

If we now set ν to be a centered Gaussian measure (multiplied with con-
stant v) with covariance W−1, application of Gaussian characteristic function
equation 2.2 shows that C in above equation 3.5 corresponds to the Squared
exponential covariance function. Hence, it follows from the Spectral represen-
tation theorem that ”Squared exponential covariance function” is non-negative
definite, that is, a proper covariance function (as anticipated from the naming).

This Gaussian process model does not yet incorporate any information from
the actual observed data. It can be thought of as a prior model. To describe
how Y changes as a function of any value x, we will use theorem 3.3. First, let

(3.6) Σ =




C(x1, x1) C(x1, x2) . . . C(x1, xn)
C(x2, x1) C(x2, x2) . . . C(x2, xn)

...
...

. . .
...

C(xn, x1) C(xn, x2) . . . C(xn, xn)



.

be the covariance of the outcome observations Ydata = (y1, . . . , yn)
T given the

corresponding input observations Xdata = (x1, . . . , xn). Then, assuming the
gaussian process model, the joint distribution of observations and a new obser-
vation (Y, x) will be of the form

(3.7)

(
Ydata
Y

)
∼ Nn+1

(
0,

(
Σ C(x1 : xn, x)

C(x, x1 : xn) C(x, x)

))
,

where C(x1 : xn, x) = (C(x1, x), . . . , C(xn, x))T and C(x, x1 : xn) = C(x1 :
xn, x)T . Thus, we can apply Theorem 3.3 to get the conditional distribution
of new observation at x given the old ones. Furthermore, we can choose the
coordinate-values (index/"position") x for the new value. In essence, we get
the distribution of Y in any point x, conditioned for the observed data. Due
to Gaussianity, this is equivalent to solving the conditional expectation and
covariance. Hence, we have a map x 7→ ϕYx|(Ydata,Xdata), that is, a map from
predictor space to conditional distributions of outcomes.

One does not usually observe any direct function f of X, but a noisy version
of it. This is why regression problems are typically formulated so that outcome
is a function of input with added (Gaussian) noise realization ξ, that is Y =
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f(X) + Ξ. However, since Ξ is independent of f(X) its contribution is easily
accounted by adding a multiplicative of indicator function, (x, x′) 7→ σξ10(x−
x′), to covariance function of observations (this equals σξ if x = x′, and 0
otherwise). In essence, instead of Σ, we consider K := (Σ +σξIn), where scalar
σξ estimates the noise variance. Without further mentioning, we will always
make this modification to the covariance function. Then, the joint distribution
of data and the new value is.

(3.8)

(
Ydata
f(x)

)
∼ Nn+1

(
0,

(
K C(x1 : xn, x)

C(x, x1 : xn) C(x, x)

))
.

By using theorem 3.3, we arrive to predicting distribution for f(x), which
is Gaussian, and thus defined by mean and variance

(3.9) f̂(x) := E[f(x)|Ydata, Xdata] = C(x1 : xn, x)K−1Ydata,

(3.10) V̂ ar[f(x)] := C(x, x)− C(x, x1 : xn)K
−1C(x1 : xn, x).

Notice that V̂ ar[f(x)] refers to conditional uncertainty regarding to which event
ω ∈ Ω applies, giving particular f(x) = f(x, ω). This uncertainty stems from
our lack of knowledge about the true latent function, and is a decreasing func-
tion of n (provided that observations sample near the relevant area of index-
space). If we are interested about the uncertainty in possible future observation,
Yx(ω) = f(x, ω) + Ξ(ω), then σξ = V̂ ar[Ξ] must be added to V̂ ar[f(x)] to take
into account the independent noise in each observed Yx. This uncertainty does
not decrease with increasing amount of observations. Had we assumed a priori
that E[Yx] = g(x) for some function g, instead of E[Yx] ≡ 0, we would see that
equation 3.9 is replaced with

f̂(x)− g(x) = C(x1 : xn, x)K−1
(
Ydata − (g(x1, . . . , g(xn))

T
)
,

meaning that we are doing linear inference based on the residuals of prior
assumption. Because this scaling is independent of Ydata it is most convenient
to set g ≡ 0.

This far, we have assumed that we know the correct parameters for covari-
ance matrix K =: K(v,W, σξ) =: K(θ), collectively referred as θ := (v,W, σξ).
This rarely is the case. Instead, standard Maximum likelihood estimation can be
applied to learn them from the data. The observed outcome data is distributed
as N(0, K(θ)), with the density ϕ(Ydata|Xdata; θ). The value of the probabil-
ity density function (pdf) of observed data, ϕ(y1:n|x1:n; θ), can be viewed as a
function of θ. This is called the likelihood function, and often denoted as L(θ).
It, or usually it’s logarithm, can be maximized to find the ”most likely” value
of θ. Conjugate gradient-based optimization routine works well, as most com-
putational cost per iteration comes from inverting K (Rasmussen & Williams,
2006, p. 114-115). Since logarithm is a monotonic function

argmaxθL(θ) = argmaxθ logL(θ),
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and one typically maximizes a simpler function ℓ(θ) := logL(θ), instead of
L(θ). In this case,

ℓ(θ) = logϕ(Ydata|Xdata; θ)

= log

(
1

(2π)n/2|K(θ)|1/2 e
− 1

2
Y T
data
K(θ)−1Ydata

)

= −n
2

log(2π)− 1

2
log |K(θ)| − 1

2
Y TdataK(θ)−1Ydata.(3.11)

We skip these statistical calculations for now, as we have not yet arrived to
our desired model. Let us just state that optimization task is feasible. This
maximization procedure is integral part of the learning of latent function f from
the observations, as it also (in addition to Gaussian conditioning), determines
the probability measure of the function space.

Figure 3.2 shows one-dimensional demonstration about the predictive dis-
tribution of f(x) = f(x, ω). We first took 30 data points (open circles) from the
realization of the figure 3.1 (w = 0.01), and added Gaussian noise with standard
deviation 1/2 (stars). After this, we acted as if we only knew the data points
denoted by the stars in figure. Then, the likelihood ϕ(Ydata|Xdata, θ) was maxi-
mized with a gradient-based optimization routine, and conditional distribution
given these 30 data points (stars) was calculated for points ’x’ in the horizontal

axis of the figure. Solid line in the figure shows estimated f̂(x), and grey area

corresponds to points in the confidence interval (f̂(x) − 2
√
V̂ ar[f(x)], f̂(x) +

2
√
V̂ ar[f(x)]), that is to points within two standard deviations from the mean.

From this figure we can already anticipate that, in spite of its simplicity, GPR
may be a powerful data-driven approach to regression also in larger dimen-
sions. It can automatically find, or ”learn”, a function from very large class
of functions, given some noisy observations from this function. Indeed, it has
been shown to perform better, or as well as, many known methods (Rasmussen,
1996). We can also give a direct visual proof of the capacity of GPR in finding
hidden functions amidst the noise, as follows.

Consider two functions on a real-plane, f(x, y) := (x+y)2+2x and g(x, y) :=
sin(2x)+y2, observed for evenly distributed grid of 15-by-15 observation within
[−2, 2]×2 ⊂ Rd, as in the left column of figure 3. Let us then consider a more
realistic situation where we observe only Y(x,z) := f(x, z) + 5ξ and U(x,y) :=
g(x, y) + 2ξ, where ξ ∼ N1(0, 1) is a Gaussian perturbation/error (middle col-
umn). Furthermore, consider that we have no knowledge about the form of f or
g, nor from the multiplicative constant of the random ξ. Again, we assumed the
above discussed GPR model, maximized the likelihood, and made a prediction
f̂(x, z) = E[f(x, z)|Ydata, (xdata, zdata)], and similarly for ĝ(x, y) (right column).
While functions are not reproduced perfectly, it is obvious that this is a good
result. Visual inspection of the middle columns of figure 3 could not hint this
result, and human visual system is fairly powerful pattern detector in suffi-
ciently low dimension. While we neglected the actual likelihood maximization
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Figure 3.2. Mean and two standard deviations of Conditional Gaussian
process given the observations (stars)
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for now, we will return to it later on. Also, next section will assess theoretical
arguments for the surprising power of this fairly simple smoothing device.
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Figure 3.3. Denoising functions on plane using GPR

3.3 Theoretical perspective

In this chapter we attempt to build some intuition for Gaussian processes in
regression context. Origins of GPR lie in the Geostatistics, where it is known as
Kriging. Gaussian random field can be used, for example, to estimate concen-
tration of some mineral beneath the ground, given some amount of measured
sample sites. Given above examples, it can be viewed as more general regression
tool as well. But why do things work out so neatly for GPR? Is there a way
to better understand why maximization of the likelihood function ϕ so read-
ily leads to right covariance function, allowing us to find the desired function
value with a simple linear smoothing (matrix product) on the observed out-
come values of Gaussian process? Not so surprisingly, the answer is yes. But,
we need some tools to provide this reasoning. Actually, there are several ways
to gain intuition, but let us begin with a combination of constructs known as
Reproducing kernel Hilbert space (RKHS) and Bayesian statistics. After this
we will shortly present a connection between Markov processes and a subset of
Gaussian processes. In general, this section provides broader perspective and
is not absolutely necessary for understanding the rest of current work.
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Some notions from Functional analysis are unavoidable. Recall that Hillbert
space, is a Banach space that allows an inner product. A Banach space is a
complete vector space with a norm ‖ · ‖. A metric space is complete when
every Cauchy sequence converges to a point in that space. If a sequence (xi)

∞
i=1

satisfies that, for every ε > 0, there is an integer n such that ‖ xi− xj ‖< ε for
all i, j ≥ n, it is called a Cauchy sequence. If V is a vector space, inner product
is a map 〈·, ·〉 : V × V → R which is linear, symmetric in its arguments, and
positive definite, that is, 〈x, x〉 > 0 for all x 6= 0. The inner product defines a

norm with ‖ x ‖2:=
√
〈x, x〉.

RKHS is constructed from the covariance function C(·, ·) of a Gaussian
process. Let T be some index set, for example T ⊂ Rd. We follow the exposition
in Adler & Taylor, (2007), and start with a following function space:

S = {u : T → R : u(·) =
n∑

i=1

aiC(xi, ·), ai ∈ R, xi ∈ T}.

This space allows an inner product defined by

(u, v)H =



n∑

i=1

aiC(xi, ·),
m∑

j=1

biC(xj , ·)


H

:=
n∑

i=1

m∑

j=1

aibjC(xi, xj),

if C is positive definite covariance function. Furthermore, for fixed x ∈ T , if we
consider C(x, ·) as a function of its second argument, (·, ·)H satisfies an unusual
reproducing kernel property:

(u, C(x, ·))H =

(
n∑

i=1

aiC(xi, ·), C(x, ·)
)

H

=
n∑

i=1

aiC(xi, x) = u(x).

Inner product (·, ·)H defines a norm by ‖ u ‖H := (u, u)
1/2
H . Closure of S

under this norm is a Hilbert space of real-valued functions, denoted as H(C),
and defined by the covariance function C. This is the RKHS. A Hilbert space
is said to have an orthonormal basis, (ei)

∞
i=1, ei ∈ V if all its elements, u, can

be expressed as

u =
∞∑

i=1

〈u, ei〉ei,

where ‖ ei ‖2= 〈ei, ei〉1/2 = 1 for all i, and 〈ei, ej〉 = 0 for all i 6= j. While
detailed construction is out of the scope here, Mercer’s theorem guarantees
that H(C) has an orthonormal basis (Adler & Taylor, 2007; Rasmussen &
Williams, 2006).

Consider then a space defined as H := span{Yx, x ∈ T}, that is, countable
linear combinations of the values of centered Gaussian process in some indices.
This space inherits the usual L2-inner product, 〈X, Y 〉 := E[XY ], discussed in
the Introduction. Now, let us define a linear map Γ : S →H,

Γ(u) = Γ

(
n∑

i=1

aiC(xi, ·)
)

:=
n∑

i=1

aiYxi.
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Clearly, as a sum of Gaussian variables, Γ(u) is Gaussian. It also defines a
(norm-preserving) linear isomorphism:

‖ Γ

(
n∑

i=1

aiC(xi, ·)
)
‖22= |

n∑

i=1

n∑

j=1

aiE[YxiYxj ]aj |

=
n∑

i=1

n∑

j=1

aiC(xi, xj)aj

=‖ u ‖2H .

Consequently, Γ extends to all of H(C), as is known from functional analysis.
Furthermore, all limits are Gaussian, as shown in the proof of the Theorem 2.2
regarding existence of Gaussian process.

If now (ei)
∞
i=1 is an orthonormal basis of H(C), setting ξi = Γ(ei) for all i

yields an orthonormal basis for H. We must have that all ξi are Gaussian. Since
‖ ξi ‖2= 1, 〈ξi, ξj〉 = E[ξiξj] = 0, and ξi and ξj are Gaussian, it follows that
E[ξiξj] = E[ξi]E[ξj] = 0 for all i 6= j, and further that all ξi have distribution
N1(0, 1). Also,

Yx =
∞∑

i=1

ξiE[Yxξi],

where the sum converges in L2. Because Γ was isometry with Γ−1(Yx) = C(x, ·),
and (·, ·)H has a reproducing kernel property,

E[Yxξi] = (C(x, ·), ei)H = ei(x).

Collecting above results establishes following theorem, which was the pur-
pose of current functional analytic discussion:

Theorem 3.5 (Orthogonal expansion of Gaussian process). If the sequence
of real-valued functions, (ei)

∞
i=1, is an orthonormal basis for H(C), then zero

mean Gaussian process {Yx} with covariance C has the L2-representation

Yx =
∞∑

i=1

ξiei(x),

where (ξi)
∞
i=1 is orthonormal sequence of centered Gaussian variables given by

Γ(ei).

This theorem also allows one to show, via tail-event argument, that

Theorem 3.6. x 7→ Yx is almost surely continuous if, and only if, the sum in
theorem 3.5 converges uniformly in T with probability 1.

Proof. See e.g. chapter 3 in Adler & Taylor, (2007).

�
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Hence, Gaussian processes almost surely are either continuous or discontin-
uous, without middle ground. Also, the roughness of the process is controlled
by basis functions of H(C), thus, ultimately by the covariance function C.

Theorem 3.5 opens up an interpretation, previously presented (at least) in
Rasmussen & Williams, (2006). Recall that linear regression model with one
variable can be defined as Yx = β1x + ξ. Familiar extension of this standard
model to cover nonlinearities with respect to x is to seek estimate for Yx ≈∑n
i=1 βiei(x), where (ei)

n
i=1 is some set of nonlinear basis functions. If we now

replace fixed set of coefficients (βi)
n
i=1 with a random vector (ξi)

n
i=1 =: β, we

have given a Bayesian prior distribution to weight of each basis function in Y .
Let (Y, x) denote some observed data ((Yx1, x1), . . . , (Yxm, xm)). According to
a well-known Bayes theorem, in the case that we have densities px(·) for all
relevant distributions,

(3.12) px(β|Y ) =
px(Y |β)px(β)∫
px(Y |β)px(β)dβ

=
px(Y |β)px(β)

px(Y )
,

is the posterior probability of regression coefficients (equivalently basis function
weights) given the observed data. We wrote x in the subindices of densities, px,
to remind that they depend on constant x (or alternatively, on fully independent
”marginal model” pX(x), as often interpreted in statistics).

Quantity px(Y ) in 3.12 is known as the evidence (or marginal distribution)
of the data, and it plays an important role in Bayesian model selection. Notice
that it involves an integral of data likelihood with respect to prior measure
px(β)dβ. This automatically implements what is know as the Occam’s razor in
philosophy of science (MacKay, 2003, chap. 28). It means that one should favor
a simple hypothesis over a complex one, when it suffices to explain the observed
data. If one defines a prior that sets probability mass to a wide volume of
parameter space (diffuse/uninformative prior) then constraints

∫
px(β)dβ = 1

and px(β) ≥ 0 imply that px(β), and hence also px(Y ), must have mostly small
values. If, on the other hand, px(β)dβ puts mass only to very small set, and it
does not happen to be near the maximum of likelihood px(Y |β) for the current
observations, also this leads to small evidence. Optimal situation occurs with a
”small” model (simple hypothesis) setting probability mass to correct region of
parameter space (and to correct dimensional parameter space). Notice further,
that px(Y ), being function of data only, involves no more parameters β. In fact,
it is a function of data and chosen model, represented by likelihood and prior
structures.

Drawing a direct analogy from above discussion to GPR, let the sum
∑n
i=1 ξiei(x)

tend to infinity as in theorem 3.5. The space of possible model structures is now
indexed by the parameters θ defining the precise form of covariance function
C. Due to nice analytic properties of Gaussian families, we can make all the
relevant predictions without never explicitly writing out ξi or ei(x). When we
maximize the likelihood ϕ(Ydata|Xdata, K(θ)) with respect to theta, we are ac-
tually maximizing the evidence of model, not just likelihood. ”Parameters” of
the orthogonal expansion are just marginalized away from the visible equations.
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Hence, in spite of the fact that Gaussian processes can model very many func-
tions, we are not overfitting to data, as would otherwise happen with infinite
predicting functions. That is, the Occam’s razor is built-in to GPR. Of course,
this goes only so far as we may regard that we have chosen a right covariance
function form, that is, right mapping θ 7→ Cθ(·, ·). In any case, this should offer
a strong intuition for why GPR works as well as it does. In chapter six we
will see that, in the case of the Squared exponential covariance function, basis
functions of H(C) and L2-expansion (given by Mercer’s theorem) are Gaussian
kernels centered densely1 in T .

When K is the covariance function for n observations as in previous section,
log-likelihood in GPR-model decomposes as

ℓ(θ) = −1

2
Y TdataK(θ)−1Ydata −

1

2
log |K(θ)| − n

2
log(2π).

In the light of above discussion, these parts of a sum have clear interpretation.
The first, and only, term depending on outcome observations is− 1

2
Y TdataK(θ)−1Ydata.

This is the measure for data-fit, that is, for how well the model capture proper-
ties of current data. Second term, − 1

2
log |K(θ)|, is a complexity penalty, which

depends only on the covariance function and indexing observations. Recall,
that absolute value of determinant gives the volume of (hyper) parellelepiped
formed by row vectors of the matrix, and that covariance matrix is a linear de-
scription for how random vector varies in the multidimensional space. Hence,
the more degrees of freedom we leave for the data (”larger the volume of co-
variance matrix”), larger is the complexity penalty. Hence, in optimization of
the likelihood, there is a trade-off between the data-fit and allowed complexity.
Last term, −n

2
log(2π), is a normalization constant for probability density.

While orthogonal expansions and Bayesian regression offer very general
framework for understanding GPR, in somewhat more restricted context, use-
ful insight may stem from a research line known as the Dynkins program
(Ylvisaker, 1987). This approach connects Gaussian processes with much in-
vestigated Markov processes, leading to Gaussian Markov-associated processes
(G-MAP). We say that

Definition 3.3. Gaussian process {Yx} is a G-MAP on T if for any x ∈ T
and finite subset U of T ,

(3.13) E[Yx|Yxi, xi ∈ U ] =: EU [Yx] =
∑

i

pUx (xi)Yi,

where pUx (xi) ≥ 0 form a sub-distribution on U , that is,
∑
i p
U
x (xi) ≤ 1.

Note that in predictive equation 3.9 we already have that expected value
of the process is a linear combination of observations, as in above, although in
above, observations are considered as random (not yet observed), and EU [Yx]

1A set U ⊂ T is dense in T if its closure equals T .
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is thus a random variable. Equation 3.9 does not necessarily define a sub-
distribution on observations. In fact, G-MAPs are non-smooth processes (Ylvisaker,
1987), excluding covariances such as the Squared exponential. Nonetheless, they
have a property which make them interesting for questions of designing exper-
iments, which is why we very briefly mention them here, as a potential future
research direction. Current work does not go farther to this direction as we
wish to retain connection with the squared exponential covariance.

In some cases it may happen that collecting indexing observations (behav-
ioral data, questionnaires, etc.) is "cheap" in comparison to collecting outcome
observations. For example, it is often of interest in medicine to associate some
behavior to neural transmitter concentrations in human brain. Drugs that at-
tempt to change behavior and mood often target these transmitters, but there
are lot of open questions for research. Measurement of transmitter concentra-
tion may be invasive, involving procedures such as drawing bone marrow or
injecting radioactive tracer to blood stream to aid brain imaging. In such re-
search context, one wishes to expose as few people as possible to procedure,
while still collecting representative data that allows statistical inference. An op-
timal research design might then mean the best sampling of indexing space T .
In the context of Gaussian processes, we might wish to minimize our uncertainty
regarding to true (expected) function in some interesting subset of indices T .
That is, we wish to find out which indexing observations minimize predictive
variance of equation 3.10, before we have actually collected any observations.
It is then possible to collect large set of indexing observations and choose only
those individuals/indices to further outcome measurement who offer reliable
estimate with small amount of observations. If, in addition, we wish to use a
covariance that leads to G-MAP, some answers may be found via the Dynkin’s
finding that for each G-MAP, there exists an associated Markov-process.

For simplicity, we consider a countable index-space T . By definition, one
can then arrange T to some increasing order with bĳection to natural numbers
N (note that high-dimensional grid of arbitrary precision is countable). Let us
now denote indices simply with natural numbers. A stochastic process {Z} is
said to be Markov-chain if distribution of next observation depends only on the
one before it, that is

P (Zn+1 ∈ A|(Z1, Z2, . . . , Zn)) = P (Zn+1 ∈ A|Zn)

for all sets A ∈ F . Due to this simplifying property, Markov chains are easy to
analyze and simulate. If {Zn}n∈N is a Markov process one may define a transi-
tion probability p(x, y) = P (Z1 = y|Z0 = x) which is a probability that chain
moves to y in one step, starting from x. Then, due to defining Markov-property,
probability of moving to y in n steps is pn(x, y) =

∑
z∈T p

n−1(x, z)p(z, y). Let
then N(y) :=

∑∞
n=0 1{Zn=y} be the total number of visits of Z to y. We may

now define the Green function of Z as

(3.14) G(x, y) = Ex[N(y)] =
∞∑

n=0

pn(x, y),
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where x in the sub-index of expectation operator refers to starting point Z0 = x.
If G(x, y) is finite, Z is expected to visit y only finite number of times (process
is transient). If one wishes to examine non-transient (recurrent) process there is
a technical trick that one may force an additional imaginary observation that is
defined as a killing state. That is, after entering this state, process is no longer
in T . It turns out that G : T ×T → R is non-negative definite, and hence there
is a zero mean Gaussian process {Yx}x∈T (Ylvisaker, 1987).

Theorem 3.7. The Gaussian process {Yx}x∈T with covariance function G
given by equation 3.14 is a G-MAP on T , and {pUx (xi)}i is the first-hit dis-
tribution, {Px(infZn∈U,n>0Zn = {xi})}i, of associated Markov-process Z on U ,
starting from index-state x.

�

If transient case is excluded, sub-distribution in the definition of G-MAP
will be a proper probability distribution (Ylvisaker, 1987). If we now define the
error process

(Y −EU [Y ])x := Yx − EU [Yx],

via definition of G-MAP, we get error process covariance

E[(Y −EU [Y ])x)(Y − EU [Y ])x]

= E[YxYx]− 2E[YxE
U [Yx]] + E[EU [Yx]E

U [Yx]]

= G(x, x)− 2
∑

i

pUx (xi)E[YxYxi] +
∑

i

∑

j

pUx (xi)p
U
x (xj)E[YxiYxj ]

= G(x, x)− 2
∑

i

pUx (xi)G(x, xi) +
∑

i

∑

j

pUx (xi)p
U
x (xj)G(xi, xj)

= G(x, x)−
∑

i

pUx (xi)G(xi, x)

= E[number of visits of Z to x starting from x]

−E[number of visits of Z to x after hitting U].

Error process covariance would equal predictive covariance (eq. 3.10), if Yx =
f(x), that is, f be observed without noise. Thus, we get the uncertainty re-
garding latent function value at x given observations in the indices U ⊂ T ,
in terms of expected returns of Markov chain to x. In addition to illuminat-
ing interpretation, this opens up a possibility of inferring design questions via
Markov chain simulation. Note, however, that these interpretations apply only
to a restricted set of covariance functions. We conclude our theoretical section
with these prospects for future investigation. For example, Marcus & Rosen,
(2006) offer a recent reference on the theoretical connections between Markov
and Gaussian processes.

3.4 Problem of measurement error

Above presented regression approach works independently of whether Xdata
is drawn with randomness or by design. Of course, we get information from
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the behavior of f mainly in the neighborhood of observations, but sampling
distribution need not be explicitly incorporated to practical modeling consid-
erations. However, what happens if we observe Xdata inaccurately due to some
noise source in the measurement procedure of X itself? Consider the classi-
cal measurement error model, where Xobserved = Xtrue + ξx and ξx ∼ N(0, σx)
(Carroll, Ruppert, Stefanski & Crainiceanu, 2006, chap. 1). Depending on the
”true” latent function f , f(xobserved) may be very different from f(xtrue). If we
go on forcing the same model, observe that

Y = f(Xobserved) + ξ

= f(Xtrue)− f(Xtrue) + f(Xobserved) + ξ

=: f(Xtrue) + ξ′,

where ξ′ = f(Xtrue + ξx) − f(Xtrue) + ξ is no longer Normally distributed
independent error, but depends from f , Xtrue, ξx and ξ. As ξ is independent
of other factors in the new error term, V ar[ξ′] ≥ V ar[ξ]. Depending on the
situation, V ar[ξ′] may be a lot larger than V ar[ξ]. Hence, likely consequence
of using standard GPR-model with erranously observed input is an inflation
of i.i.d. noise variance parameter, σξ. If estimate of i.i.d. noise component is
inflated, this means that only small part of observed variance in the data is
interpreted as coming from the latent function f , that is, estimate of f̂ given by
equation 3.9 tends toward constant function. Computer simulations verify that
this indeed happens (Dallaire, Besse & Chaib-draa, 2009). Uncertainty estimate

ˆV ar(f) of equation 3.10 may also be overly optimistic for the constant function
interpretation. Thus, disregarding noise in indexing observations may lead to
high confidence for wrong result.

From above considerations, it follows that we need to somehow take into
account ξx also. To do this, we need information about it. To gain informa-
tion, we need to create a model for the measurement procedure and associated
error. In this situation, a modeler needs to be familiar with the properties of
the actual data that is modeled. For different situations, there are different
ways to model the error in predictor variable (Carroll, Ruppert, Stefanski &
Crainiceanu, 2006). In the next chapter, we introduce a model for our purpose.
Only after this, we return to problem of GPR with uncertain input.

34



4 Measurement model

4.1 Behavioral scales

Behavioral scale is defined to be a function of a set of items. Typically, these
items are answers to questions of a questionnaire, given as numerical values. Let
us denote these questions as q = (q(1), q(2), . . . , q(m))T . For example, q

(j)
i could

stand for the integer value from 1 to 5, depending on whether the individual
i thinks his/her behavior agrees well with the description of the question j or
not. In typical Likert-scale (coding standard), an individual sets value 1 for

q
(j)
i if the description does not fit at all to him/her, and value 5 if it fits very

well. Sometimes q already stands for the sum of values for several questions. In
any case, it is commonly agreed in behavioral sciences that answers to single
question, or few of them, are not reliable indicators of a long-term behavior. For
this reason, one often wishes to collect answers to very many question (typically
c. 50-300), and then to reduce this information to few particularly informative
variables, or dimensions. First of all, one wishes to describe a general behavioral
tendency, and people are not very able to objectively describe themselves in
relation to other population. However, it is much easier to extract objective
responses to questions about how one behaves in situations occurring on daily
basis (or often enough to be well recollected). One can then derive more general
constructions from this information.

Another reason to favor dimension reduction methods, is that they reduce
error variation from the measure of interest, given that one has several in-
dicators for it. Essentially, this is a consequence of the Central limit theo-
rem of probability theory. If one has several independent noisy measurements
(q(1), q(2), . . . , q(m)) from the same common underlying (latent) variable, then
their average tends toward the value of this latent variable. Larger the number
of measurements/items, m, the less will this average deviate from the latent
variable of interest. In fact, the constructed scale often is just a simple average
of several items.

In the next section, we will describe a statistical formalism that is a linear
description of behavioral scales. This suffices for the purposes of present study,
as non-linear functions from items to behavioral scales are virtually non-existent
in the literature. It would also be very difficult to come by with this kind
of a scale. Usually there is not much more theoretical information, than a
knowledge that given item associates with certain underlying construct/latent
variable. Data-driven estimation of nonlinearities would be a very challenging
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task, given the amount of questions and lack of their precision.

4.2 Standard statistical model - Factor analysis

Standard statistical approach for the modeling of behavioral scales is based
on the Factor analysis method (Lawley & Maxwell, 1971; Cudeck & MacCal-
lum, 2007; Tarkkonen & Vehkalahti, 2005). Assume one has m items, q =
(q(1), q(2), . . . , q(m))T , which supposedly reflect variation from d latent variables
that are elements in a vector u ∈ Rd. Then, according to Factor analysis model,
item values for each individual i are independently generated as

(4.1) qi = Λui + ξi, ξi ∼ Nm(0,Ψ), ui ∼ Nd(0,Φ).

Here, Λ ∈ R
m×d is a fixed matrix of coefficients, or loadings, of u to items q. It

tells how much of the true variation of elements of u each item q(j) preserves. Ψ
is a diagonal error covariance matrix, and Φ is the covariance of latent variables.
The same model is assumed to hold for all individuals. Expectation of u could
be non-zero, but this does not yield much more generality for the model, as
one can always subtract the mean from observations of q. Since behavioral
measures can mainly be interpreted only relative to other individuals, mean
values by themselves offer little information. Thus, we prefer to keep notation
transparent, and set E[U ] = 0. From the properties of expectation and linear
algebra,

(4.2) Cov[Q] = E[QQT ] = ΛΦΛT + Ψ.

Estimation of the matrices Λ, Φ and Ψ from the data is not a trivial task,
but there are standard routines implemented to nearly every statistical pro-
gram. Typically, estimation is divided to two parts, because parameters that
maximize the likelihood are not unique. Thus, one extracts some parameters
by maximizing the likelihood, and rotates within the set of maximizing param-
eters according to some criterion (Lawley & Maxwell, 1971; Jennrich, 2007).
To see where this terminology comes from, consider the case of orthogonal, or
uncorrelated, latent variables, i.e. Φ = Id (due to Gaussian assumption, this
also implies independence of latent variables). In this case, if Λ0 and Ψ are max-
imum likelihood estimates, and M is an arbitrary d-by-d rotation matrix (that
is, det(M) = 1 and M−1 = MT ), then Λ1 := Λ0M and Ψ are also maximum
likelihood estimates. This follows from the equality:

Λ0Λ
T
0 + Ψ = Λ0MMTΛT0 + Ψ = Λ1Λ

T
1 + Ψ.

In this case, extraction step refers to finding some Λ0, and rotation refers to
finding matrix M such that Λ1 becomes, in some sense, convenient, or inter-
pretable. Usually this convenience criterion is some sort of simplicity require-
ment, setting as many of elements of Λ1 near zero as possible.
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Further information on the topic of rotation can be found from the literature
(Lawley & Maxwell, 1971; Jennrich, 2007). In the next chapter, we will show a
simple method for the extraction step. In general, more advanced Markov chain
Monte Carlo estimation methods, such as Gibbs sampling (Geman & Geman,
1984, , see also estimation methods section in the chapter below), offer distinct
benefits compared to more traditional maximum likelihood methods (Lawley
& Maxwell, 1971). This is because of so called Heywood cases (Martin & Mc-
Donald, 1975). Maximum likelihood methods may (fairly often) end up with a
solution where some of the diagonal values in Ψ are zeros, or negative. Clearly,
it makes no sense for the variance to be negative. It rarely makes sense, that
some item q(j) reflects pure latent variation, without any noise, correspond-
ing to case of zero value in Ψjj. Bayesian estimation avoids these cases by
putting a prior distribution for Ψ, which assigns null probability for diagonal
values less than, or equal, to zero. For example, Lopes & West, (2004) offer a
good implementation for the extraction via Gibbs sampling. This appears to
slightly outperform maximum likelihood methods even in a simple ideal data
case (personal simulations, not shown). Another good thing that comes with a
Gibbs sampler is simulated set of random values from the posterior distribution
of latent values (U1, . . . , Un). From this, one gets estimates for the mean and
standard error of each individual’s true/latent traits. Also, more flexible model
assassment becomes possible with a Bayesian approach (Lopes & West, 2004).

Given that it is possible to estimate the Factor analysis model, and to es-
timate the ”true value” ui for each individual i, one might guess that this is a
standard practice. After all, it would, to some extent, solve the problem of mea-
surement error discussed in the end of the preceding chapter. However, Factor
analysis model involves plenty of unknown parameters, and also other things
(Ellis, 2004), which make it an unstable tool. Construction of a behavioral
scale, from initial pondering of appropriate questions to a final tested product,
is a huge undertaking. One wishes to use it many times and in many places, in
as identical form as possible. Thus, Factor analysis is, in practice, often used
mainly to confirm what questions reflect most the given latent variable, and
what questions do not. Means to measure u, the scale, is then formed manu-
ally, and typically each element of measured u is taken to be just an average of
certain subset of items in q. Also, any estimate for ui still contains noise in the
form of estimation error, and possibly also via model miss-specification. Basing
one complex model estimation (GPR) on estimate from another complicated
procedure (Factor analysis) may not yield good results in practice. Hence, we
will devote the next chapter for estimation considerations in the case where
these models need to be somehow combined. In below, we discuss how to de-
rive error estimates for ui, further needed in the chapters five and six. We need
a basic result, adopted from Cappé et al., (2005).

Proposition 4.1 (Conditioning in the Gaussian Linear Model). Let U and V
be two independent Gaussian random vectors with E[U ] = µU , Cov(U) = ΣU
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and Cov(V ) = ΣV . Assume E[V ] = 0, and consider the model

Q = ΛU + V,

where Λ is deterministic matrix of appropriate dimensions. Further assume that
ΛΣUΛT + ΣV is full-rank matrix. Then

E[U |Q] = E[U ] + Cov(U,Q)Cov(Q)−1(Q− E[Q])

= µU + ΣUΛT (ΛΣUΛT + ΣV )−1(Q− ΛµU)(4.3)

and

Cov(U |Q) = Cov(U − E[U |Q]) = E[(U − E[U |Q])UT ]

= ΣU − ΣUΛT (ΛΣUΛT + ΣV )−1ΛΣU .(4.4)

Proof. Denote

Û := E[U ] + Cov(U,Q)Cov(Q)−1(Q− E[Q]),

which implies

Cov(U − Û , Q) = Cov(U,Q)− Cov(U,Q)Cov(Q)−1Cov(Q) = 0.

The random vectors Q and U − Û are thus jointly Gaussian (as linear transfor-
mation of Gaussian random vector, see proof of theorem 3.3) and uncorrelated.
Due to Gaussian distribution, uncorrelatedness also implies that they are in-
dependent. Û is σ(Q)-measurable, as a linear combination of the components
of Q. For σ(Q)-independent variable it holds that E[U − Û |Q] = E[U − Û ],
because for any A ∈ σ(Q), E[E[U−Û |Q]1A] = E[(U−Û)1A] = E[U−Û ]E[1A],
due to independence. Hence,

E[U |Q] = E[Û + (U − Û)|Q]

= Û + E[(U − Û)]

= Û + 0 = Û ,

and

Cov(U |Q) := E[(U − Û)(U − Û)T |Q] = E[(U − Û)(U − Û)T ] =: Cov(U − Û).

Finally, we obtain the desired covariance by noting that

Cov(U − Û) = E[(U − Û)(U − Û)T ] = E[(U − Û)UT ],

which follows from

E[(U − E[U |Q])E[U |Q]T ]

= E[E[UE[U |Q]T |Q]]− E[E[U |Q]E[U |Q]T ] = 0
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(Tower property). Rest of the statement follows directly from the assumed
linear model structure, where e.g.

Cov(U,Q) = E[(U − E[U ])(Q− E[Q])T ]

= E[(U − E[U ]) (Λ(U − E[U ]) + V )T ] = Cov(U)ΛT ,

and so on.

�

If we know values of Λ and have observed those of Q = q, we get an estimate
for U directly from the above proposition, by taking E[U |Q = q]. Similarly, we
get estimate for the covariance of estimator (U |Q = q) from this proposition
as Cov(U |Q = q).

4.3 Error variance estimate for behavioral scales

Let Υi be some estimate for the error of our estimated latent value ui for indi-
vidual i. If we have estimated the Factor analysis model via Gibbs sampling, as
discussed above, then we get a direct estimate for Υi as the posterior covariance
of ui. Or we could use Cov(U |Q = q) as above. This error estimate will come
in handy when making predictions with GPR, as will be seen in chapter 6.
For now, we discuss more about the case where one wishes to use a standard-
ized scale, derived from items q according to prior research and theory. Here
(as in Tarkkonen & Vehkalahti, 2005), we take behavioral scale to be a vector
x := AT q ∈ R

d, where q ∈ R
m are the observed items for an individual, and

AT is the matrix of fixed linear map AT : Rm → Rd. Matrix A describes how
the scale for latent u ∈ Rd is formed from the observed q ∈ Rm (m > d). With
appropriate fixed elements of A, most practical behavioral scales in the litera-
ture can be described within this generality. For a concrete example, consider
that we have 6 items/questions, for which three first ones seem to measure/re-
flect one latent construct, while the rest measure another. Then, for standard
(averaging) scale, A would be

AT =

(
1/3 1/3 1/3 0 0 0
0 0 0 1/3 1/3 1/3

)
.

While we consider that the scales used in practice are defined by some map-
ping/matrix A, we still assume that the Factor analysis model itself holds for
some parameter values. This is rather reasonable assumption. As discussed,
non-linear scales are difficult to come by. As is well-known, Normal/Gaussian
distribution is, in many sense, an ideal description of measurement error. Also,
complex behavioral traits tend toward Gaussian distribution (Plomin, Haworth
& Davis, 2009), as do (according to Central limit theorem) variables that are
sums of many separate factors. These assumptions imply also a Gaussian dis-
tribution for q, with a covariance given by equation 4.2. As discussed, elements
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of q may take only five discrete values, which sometimes is a problem, although
rarely too much in practice. Often, elements of q already are sums of many
discrete-valued items, and approximate Gaussian variables fairly well. Here, we
conform to standard practice and leave this matter unattended. Research is
done all the time to overcome this approximative step, but numerical complex-
ity grows rapidly as new unknown parameters must be introduced (Moustaki,
2007).

With these assumptions, observed/measured values of the scale, decompose
as xi = AT qi = ATΛui + AT ξi, with between-individual covariance

(4.5) Cov[X] = ATCov(Q)A = ATΛΦΛTA+ ATΨA.

In this covariance decomposition, ATΨA corresponds to part of the covariance
that reflects noise variation, whereas ATΛΦΛTA is the between-individual la-
tent variance that can be expected to predict something (Tarkkonen & Vehkalahti,
2005). Thus, ATΨA delivers an estimate of the measurement error covariance

in X. In addition, we may think that each observed x
(j)
i ∈ R contains additive

noise component with variance [ATΨA]jj, for all individuals i. If we do not
force any standard scale, proposition 4.1 directly gives us the optimal scale, in
the sense of the mean of squared error (theorem 3.2).
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5 GPR from latent index variable

5.1 EM, gradient-based, and stochastic estimation
methods

In this section, we will present various means to estimate statistical models, re-
stricting ourselves to the typical case where all the required probabilities have a
density with respect to Lebesgue-measure. We further apply these to previously
presented Factor analysis, and later on to GPR. Let us start with a well-known
Expectation Maximization (EM) algorithm, originally popularized by Demp-
ster, Laird & Rubin, (1977). This method can be used to find the maximas
of likelihood function (or posterior probability density function), in the case
that part of the data is unobserved. We immediately recognize that in Factor
analysis, the true scores U are not directly observed, but only the answers to
questions, Q. Hence, we have an ”incomplete data” situation, where only part
of the data (U,Q) is observed. Instead of the original work, we introduce the
method following less heavy notation of Cappé et al., (2005). That is, we as-
sume (U,Q) have a product measure µ ⊗ λ and densities {f(u, q; θ)}θ∈Θ with
respect to it. θ are model parameters, and we investigate the task of maximizing
a function θ 7→ f(u; θ) := f(u, q; θ), where dependence on the observed data q
has been made implicit. This changes nothing, but saves us from the trouble of
writing out the constant q (that is constant after it has been observed, when
used in estimation). L(θ) =

∫
f(u; θ)dλ(u) must exist, and it stands for the

likelihood of data when unobserved factor u is marginalized away. Thus,

(5.1) p(u; θ) := f(u; θ)/L(θ)

is the conditional probability density function of the unobserved u, given q.

Definition 5.1 (Intermediate Quantity of EM). The intermediate quantity of
EM is the family {Q(·, θ′)}θ′∈Θ of real-valued functions on Θ, indexed by θ′,
and defined by

(5.2) Q(θ, θ′) =
∫

log f(u; θ)p(u; θ′)du.

EM-algorithm proceeds by iteratively alternating between computing the
intermediate quantity (the integral) and maximizing, or increasing, the result-
ing expression with respect to θ, which is then set as the θ′ for the next iteration.
For EM-algorithm to be useful, one must be able to compute the integral in
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closed form. In many interesting situations (as in Factor analysis) this can be
done. Next we will state a proposition which gives the reader an intuition for
why EM-algorithm works, and we will prove it after the actual algorithm is
provided. Proofs on the convergence of the algorithm are just briefly discussed,
but can be found for example in Cappé et al., (2005). Originally, they were
provided by Wu, (1983). Recall, that for the log-likelihood

(5.3) ℓ(θ) := logL(θ),

maximum of ℓ(θ) equals that of L(θ), because logarithm is a monotone and
bĳective function. Now.

Proposition 5.1. Assume that
(i) The parameter set Θ is an open subset of R

d for some integer d.
(ii) For any θ ∈ Θ, L(θ) is positive and finite.
(iii) For any (θ, θ′) ∈ Θ × Θ,

∫ | ▽θ p(u; θ)|p(u; θ′)du < ∞, where ▽θp is the
gradient vector of p with respect to θ.
Then, for any (θ, θ′) ∈ Θ×Θ,

(5.4) ℓ(θ)− ℓ(θ′) ≥ Q(θ, θ′)−Q(θ′, θ′),

where the inequality is strict unless p(·; θ) and p(·; θ′) are equal almost every-
where (that is, with respect to Lebesgue-measure).

Before the proof, notice that assumption (iii) implies that all of the mem-
bers of family of distributions {p(·; θ)}θ∈Θ are absolutely continuous with re-
spect to other members. That is, sets with null probability are the same across
entire family. Thus, the Kullback-Leibler divergence (relative entropy),

(5.5) DKL(p(·; θ), p(·; θ′)) := −
∫
p(u; θ) log

p(u; θ′)

p(u; θ)
du,

is well-defined for all members of the family, with the conventions 0 log 0 =
0 and 0 log∞ = 0. Proposition itself implies that whenever we increase the
Q(θ, θ′) from the baseline of theQ(θ′, θ′), the corresponding increase in ℓ(θ) over
ℓ(θ′) is at least as large. With the following algorithm, this gives us an ascending
sequence, {ℓ(θ(1)), ℓ(θ(2)), . . .}, toward the maximum obtainable value.

Algorithm 5.1. Make an initial guess, θ(0), for the optimal value of θ, and
iterate
E-step: Determine the function θ 7→ Q(θ; θ(i));
M-step: Choose θ(i+1) to be any value θ ∈ Θ that maximizes Q(θ; θ(i)).

Iterating this ascent algorithm may lead to local maxima, instead of global,
if such exist. Hence, a good choice of the starting value, near the global max-
imum, helps in avoiding local ones. Furthermore, additional conditions are
needed to ensure that the algorithm indeed ever converges to a value. These are
(Cappé et al., 2005, chap. 10): Any level set {θ ∈ Θ : ℓ(θ) ≥ ℓ(θ′)} is compact
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and in interior of Θ, θ′ 7→ ∫
log(p(u; θ))p(u; θ′)du is continuous, and θ 7→ L(θ)

and θ 7→ ∫
log(p(u; θ))p(u; θ′)du are continuously differentiable on Θ. Here we

only consider cases that satisfy the conditions of convergence. Let us now prove
5.1.

Proof of the proposition 5.1. From the equality 5.1, we see that

Q(θ, θ′) =
∫

log (L(θ)p(u; θ)) p(u; θ′)du

= ℓ(θ) +
∫

log(p(u; θ))p(u; θ′)du,

since ℓ(θ) = logL(θ), L(θ) is constant with respect to u, and p(u; θ′) is a
probability density that integrates to 1. Same holds for Q(θ′, θ′), but with
θ = θ′, of course. Now, observe that

Q(θ, θ′)−Q(θ′, θ′)

= ℓ(θ)− ℓ(θ′) +
∫

log(
p(u; θ)

p(u; θ′)
)p(u; θ′)du

= ℓ(θ)− ℓ(θ′)−DKL(p(·; θ), p(·; θ′)).(5.6)

Since, by assumption (iii), DKL is well-defined, it is only left to show that this
Kullback-Leibler divergence is always positive and zero only when p(·; θ) =
p(·; θ′). Consider general probability densities, g and p that are absolute contin-
uous with respect to each other. Elementary inequality states that log x ≤ x−1,
with equality only when x = 1. This is a consequence of concavity of the
logarithm-function (function values lie below its tangents). Now,

(−1)DKL(g, p) =
∫

log(
g(u)

p(u)
)p(u)du

≤
∫

(
g(u)

p(u)
− 1)p(u)du

=
∫

(g(u)− p(u))du = 1− 1 = 0.

We have equality only if log( g(u)
p(u)

) = g(u)
p(u)
− 1 for almost all u, which happens

only if g = p almost everywhere.

�

Benefits of EM are its independence regarding parameterization (invertible
maps on θ), and the fact that possible parameter constraints are automatically
incorporated. As evident, EM-algorithm is useful mainly when one can easily
compute the expectation in Intermediate quantity and solve the maximum of
this quantity in closed form. When EM is not feasible, gradient-based methods
may offer an alternative (Cappé et al., 2005, chap. 10). With gradient-based
approach, one does not need to be able to find a closed form solution to maxi-
mum. Also, faster convergence may be achieved via second order information,
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as discussed below. For the use of gradient-based methods with partially ob-
served data, it helps if the Fisher’s and Louis’ identities hold. Let us denote the
Hessian matrix of second derivatives with ▽2

θf := [ ∂2

∂θi∂θj
f ]ij . By noticing that

derivative is just a limit of approximating difference quotient, we may often
use Lebesgue’s Dominated convergence theorem, and Mean-value theorem of
differential calculus, to justify the change in order of integration and differenti-
ation (Klenke, 2008, Theorem 6.28). In these cases, the following proposition
can be proved.

Proposition 5.2 (Fisher’s and Louis’ identities). Assume that, in addition to
assumptions of proposition 5.1, the following holds:
a) θ 7→ L(θ) is twice continuously differentiable on Θ.
b) For any θ′ ∈ Θ, θ 7→ ∫

log p(u; θ)p(u; θ′)du is twice continuously differen-
tiable on Θ. In addition, for any k = 1, 2 and for any (θ, θ′) ∈ Θ×Θ,

∫
| ▽kθ log p(u; θ)|p(u; θ′)du <∞,

and

▽kθ
∫

log p(u; θ)p(u; θ′)du =
∫
▽kθ log p(u; θ)p(u; θ′)du.

Then the Fisher’s identity

(5.7) ▽θ ℓ(θ′) =
∫
▽θ log f(u; θ)

∣∣∣
θ=θ′

p(u; θ′)du,

and the Louis’ identity

−▽2
θ ℓ(θ

′) = −
∫
▽2
θ log f(u; θ)

∣∣∣
θ=θ′

p(u; θ′)du

+
∫
▽2
θ log p(u; θ)

∣∣∣
θ=θ′

p(u; θ′)du

holds. The second equality may be rewritten in the equivalent form

▽2
θℓ(θ

′) +▽θℓ(θ′)▽θ ℓ(θ′)T =
∫ [
▽2
θ log f(u; θ)

∣∣∣
θ=θ′

+(▽2
θ log f(u; θ)

∣∣∣
θ=θ′

)(▽2
θ log f(u; θ)

∣∣∣
θ=θ′

)T
]
p(u; θ′)du.(5.8)

Proof. (see proposition 10.1.6 in Cappé et al., 2005).

�

From Fisher’s and Louis’ identities we see that it is possible to compute
the gradient vector and Hessian matrix at the point θ′, even though we have
not observed u (but do have a distribution for it, given θ′). That is, if we are
able to compute the relevant expectations under p(u; θ′), we can use gradient
ascent methods to maximize the log-likelihood, instead of closed form solution.

44



Recall, that gradient, ▽θℓ(θ), points to the direction in Θ that gives fastest
growth in ℓ(θ). Hence, we can maximize ℓ(θ) by iteratively taking

θ(n+1) = θ(n) + γn▽θ ℓ(θ(n)),

where the scalar γn ≥ 0 needs to adjusted in every iteration to ensure, at least,
that the sequence {ℓ(θ(n))} is non-decreasing. This gives the steepest ascent
algorithm. Here, in contrast to EM, we have an additional dilemma of choosing
γn. If we choose this value badly, it may happen, for example, that we "jump"
over the maximum, and decrease the likelihood function. A good choice is to
solve, in each iteration, a simpler optimization problem, called a line-search:

γn = arg maxγ≥0ℓ
(
θ(n) + γ ▽θ ℓ(θ(n)

)
.

Steepest ascent algorithm has rather similar converge properties as the EM-
algorithm (Cappé et al., 2005). Faster gradient ascent algorithm, with quadratic
convergence properties, is achieved by setting the second order Taylor approx-
imation,

ℓ(θ) ≈ ℓ(θ′) +▽ℓ(θ′)(θ − θ′) +
1

2
(θ − θ′)T ▽2 ℓ(θ′)(θ − θ′),

to zero. As in the steepest ascent algorithm, we want to guard against badly
chosen step sizes and, instead of simple solution, iterate

(5.9) θ(n+1) = θ(n) + γnH
−1(θ(n))▽θ ℓ(θ(n)),

where γn is chosen from the line-search and H(θ(n)) is either the Hessian matrix
▽2
θℓ(θ

(n)), or some other convenient approximating matrix (Cappé et al., 2005).
When γn ≡ 1 and H is the Hessian, this algorithm is called Newton-Raphson
algorithm. Via Louis’ identity, we can find the Hessian in missing/latent data
case.

Both, gradient ascent and EM approaches, require that one is able to com-
pute, slightly different, integral with respect to p(u; θ′) in closed form. Natural
next step is to ask whether one can loosen this requirement, extending to case
where the integral is not easily solvable. Very traditional remedy to intractable
integrals is to use approximating Monte Carlo integration. If we can simulate
a sequence of i.i.d. (independent and identically distributed) random values,
(Ui)

n
i=1, from a probability distribution P , then the Strong law of large num-

bers implies that for a Borel-measurable function g,

1

n

n∑

i=1

g(Ui)
a.s.→ E[g(U1)] =

∫
g(u)dP (u),

where a.s. refers to almost sure convergence (convergence with probability 1).
Also, finite first and second moments are required from U1. If we can simulate
random values from the distribution with density p(·; θ′), we immediately get
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a stochastic version of the EM-algorithm, where the intermediate quantity is
computed from m simulated values as

(5.10) Qm(θ, θ′) :=
1

m

m∑

j=1

log f(u(j); θ) ≈ Q(θ, θ′).

Natural name for resulting algorithm is the Monte Carlo Expectation Maxi-
mization (MCEM) algorithm. This algorithm is found to perform better when
number of simulated values is increased in each iteration of the algorithm
(Cappé et al., 2005). As EM-iteration proceeds, its step sizes tend to get smaller,
also requiring for smaller Monte Carlo estimation error.

Similarly, we can compute an approximation

(5.11) ▽ ℓ(θ′) ≈ 1

m

m∑

j=1

▽θ log f(u(j); θ)
∣∣∣
θ=θ′

,

and proceed with gradiant-based approaches (same natural extension applies
to Hessian via Louis’ identity). It should be obvious that Monte Carlo approach
introduces additional estimation error to EM-algorithm, and is a lot more com-
putationally heavy procedure. Still, it may be a sufficient work-around when
one is unable to otherwise solve the required integral.

For the gradient-based approach, Monte Carlo approximation is very close
to classical Stochastic gradient algorithm. Convergence of this type of algo-
rithm was originally shown by Robbins & Monro, (1951). Here, one defines a
deterministic sequence (γn)

∞
n=1, with the properties

γn > 0, lim
n→∞

γn = 0,
∑

n

γn =∞.

If now random variable Yn is a noisy observation of a real-valued function h at
θ(n−1), h(θ(n−1)), then the sequence

(5.12) θn = θn−1 + γnYn

can be shown to converge in probability to the root of the equation h. If we set
Yn = ▽θ log f(u(n); θ(n−1)), where u(n) is a sample from the density p(·, θ(n−1)),
we have ended up with Robbins-Monro framework. Now, we have a collection
of σ-algebras {Fn}, known as the filtration, and defined by

Fn = σ(θ(0), u(0), u(1), . . . , u(n)).

Now u(n)|F(n−1) ∼ p(·|θ(n−1)), and thus, because of Fisher’s identity, E[Yn|F(n−1)] =
▽θℓ(θ(n−1)). Hence, we can interpret Yn as noisy observation of ▽θℓ(θ(n−1)) =:
h(θn−1), for which we are seeking root for. That is, according to properties of
expectation, we may write Y (n) = ▽θℓ(θ(n−1)) + ξn, with

ξn = ▽θ log f(u(n); θ(n−1))−E[▽θ log f(u(n); θ(n−1))|Fn−1].
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Now, {ξn} is a (martingale difference) noise sequence with E[ξn] = 0 for all n.
While gradient-based methods also take steps in the direction of the gra-

dient, Robbins-Monro approach does not require a line-search. When value of
the log-likelihood function is computationally expensive, or entirely unfeasible,
to evaluate, then stochastic gradient methods may offer a good alternative. In
practice, convergence may be slow if sequence {γn} is chosen badly. Various
modifications to algorithm exist (Cappé et al., 2005). For example, one may
take, in each iteration, instead of one sample u(n), several samples {u(n,j)}. Then
a Monte Carlo estimate may be used as Yn = 1

m

∑m
j=1▽θ log f(u(n,j); θ(n−1)).

While this should reduce noise from the sequence, there appears to be little
theoretical guidance for the choice of sample-size m.

Above reviewed methods can be used to find a point estimate for θ, which is
the Maximum likelihood estimate. There exist more sophisticated methods for
estimating entire distribution for θ, that is, Bayesian a posteriori distribution
(see eq. 3.12). These might, for example, set up a Markov Chain sequence that,
after some iterations, is known to produce random values from the correct
(invariant) distribution. From these values, one may then compute any desired
Monte Carlo estimate, such as a posteriori mean or variance of the parameter
θ. Also, unknown U can be estimated as a parameter in this framework. An
umbrella term for methods with this strategy is Markov chain Monte Carlo
(McMC) method. One such method is the Gibbs sampler, in which one chooses
an arbitrary initial value θ(0) and iterates

Algorithm 5.2 (Gibbs sampler). Update the current state θ(k) = (θ
(k)
1 , . . . , θ(k)

m )

to a new state θ(k+1) as follows. For i = 1, . . . , m: Simulate θ
(k+1)
i from the full

conditional distribution of θi given other components, that is, from

P (·|θ(k+1)
1 , . . . , θ

(k+1)
i−1 , θ

(k)
i+1, . . . , θ

(k)
m ).

After each component has been updated, initiate new iteration.

After some amount of iterations, this algorithm starts producing values from
the joint distribution of θ, or that of (θ|D), if we condition for some observed
data D (Geman & Geman, 1984; Cappé et al., 2005). Due to properties of
Gaussian distribution, full conditional distributions of Factor analysis model
can be derived in closed form. Thus, this approach can be also applied to
estimation of factor analysis, and unobserved value u in it (Lopes & West,
2004). Unfortunately, in depth discussion of McMC methods is out of the scope
here. Now, after this, unsatisfyingly short, review of estimation methods, we
will begin their application to problem at hand, that is, to GPR with latent
index-observations.

5.2 Estimation of the model

As discussed above, we do not observe the true values u that index our Gaussian
field {Yu}, which with we wish to model the outcome variable Y . However, we
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do have a model for the items q given this latent u, which is the Factor analysis
model. For simplicity, we consider the case where latent covariance is identity
matrix, Φ = I. If we are not specifically interested about this latent covariance,
the model is actually the same as in the general case. To see this, note that
covariance matrix has (non-unique) Cholesky decomposition, Φ = MMT . Now,
covariance of the observations is

Cov(Q) = Λ0ΦΛT0 + Ψ

= Λ0M(Λ0M)T + Ψ

=: Λ1Λ
T
1 + Ψ.

That is, if Λ is estimated as free parameter(s), the density given by the model
does not change depending on Φ. The subject matter interpretation may change
considerably. However, when little is known a priori, assumption of independent
latent sources is in line with a scientific principle of parsimony (Occam’s razor),
stating that simplest model should be chosen until proven wrong.

Let us now model u ∼ N(0, I) and q ∼ N(0,ΛΛT +Ψ) with Factor analysis,
and y with a Gaussian field having the Squared exponential covariance structure
(implying parameters v,W and σξ, as previously set). In previous section it
was shown that, in latent variable situation, it is possible to utilize the EM-
algorithm with an intermediate quantity

(5.13) Q(θ; θ′) =
∫

log(f(y, q|u; θ))p(u|y, q; θ′)du,

where now θ = (W, v, σξ,Λ,Ψ) contains all the unknown parameters in the like-
lihood of joint model f(y, q|u, θ) = ϕ(Y |U)(y|u; θ)f(Q|U)(q|u; θ). Factorization of
the model follows from the fact that outcome Y is independent of items/ques-
tions Q given latent variable U . We further notice that distribution of the latent
variable is independent of outcome variable and GPR-model predicting it, given
items q. That is, p(u|y, q; θ) = p(u|q; (Λ,Ψ)). Taking these into account, we find
that

Q(θ; θ′) =
∫

logϕ(Y |U)(y|u; (W, v, σξ))p(u|q; (Λ′,Ψ′))du

+
∫

log f(Q|U)(q|u; (Λ,Ψ))p(u|q; (Λ′,Ψ′))du

=: Qϕ(θ, θ′) +Qf(θ, θ′).(5.14)

From above decomposition one immediately sees that maximum of Qf is en-
tirely independently of the GPR-model and outcome variable Y . It may thus
be wise to estimate the simpler Factor analysis model f(Q|U) first, and set its
maximum likelihood parameters before going to full estimation with respect to
all parameters (W, v, σξ,Λ,Ψ). Almost all estimation algorithms converge faster
and more reliably if one is able to start them near the maxima. Before doing
this, let us review some helpful notations and concepts on matrix differentials.

In principle, likelihood function is a real-valued function of vector-valued
parameter. However, in derivation, it is helpful to consider functions from scalar
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to matrix. Thus, we introduce a derivative of some matrix Y with respect to
scalar x as ∂Y

∂x
, where each element of matrix [ ∂Y

∂x
]ij is a derivative of func-

tion x 7→ Yij(x) mapping x to (i, j)th element of the matrix Y . This provides
a natural way to use the chain rule of differential calculus without loosing
the matrix interpretation. Consider then a real-valued function from matrices,
X 7→ f(X) ∈ R. Here, we set the derivative as matrix of equal size, with each el-
ement being ordinary derivative with respect to corresponding matrix element,
∂f(X)
∂X

:= [ ∂f(X)
∂Xij

]ij. Even though we arrange derivatives to a matrix, this ap-

proach is mostly the same as the gradient vector in ordinary vector calculus. As
the trace is just a sum of the diagonal elements of the matrix, Tr(Y ) =

∑d
i=1 Yii,

linearity of the differential operator implies that ∂Tr(Y )
∂x

= Tr( ∂Y
∂x

). Furthermore,
it is easy to see that Tr(XTY ) = Tr(XY T ) =

∑
ij XijYij = vec(X)Tvec(Y ),

where vec(X) is a column vector of the elements of matrix X. That is, trace of
the matrix product equals inner-product of their elements. Thus, we get an in-
terpretation that a differential of real-valued matrix function f(X) to direction
H is

dH(f(X)) = vec(
∂f(X)

∂X
)Tvec(H) = Tr(

∂f(X)

∂X

T

H),

which is just a differential of analogous vector function f̃(vec(X)) = vec(f(X)).
Naturally, all operations must be defined. In fact, since inner-product defines
a norm, we see that matrix-space Rd×m is isomorphic to vector space Rdm

with a canonical isomorphism, vec : R
d×m → R

dm, that stacks the columns of
matrix to a vector. Here, the matrix-space is endowed with Frobenius norm,

‖ X ‖F=
√∑d

i=1

∑m
j=1 |Xij|2, and the vector space is endowed with a standard

Euclidian norm. Thus, the adopted notation offers no greater generality than
the familiar vector calculus, but sometimes it makes book-keeping a lot easier
by allowing matrix formulas. Let us begin by reviewing few results regarding
multidimensional differentials from this perspective. Specifically, we will need
the derivative of the determinant function and inverse of the matrix.

Lemma 5.1. If each element of the d-by-d invertible matrix Y is a differen-
tiable function of the scalar x, then

(5.15)
∂det(Y )

∂x
= det(Y )Tr(Y −1 ∂Y

∂x
),

Furthermore, we have

(5.16)
∂Y −1

∂x
= −Y −1 ∂Y

∂x
Y −1.

Proof. (Magnus & Neudecker, 1991, chapter 8, Theorems 2 and 3).

�

With these tools, let us now consider estimation of Factor analysis model
via EM.
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5.2.1 Estimation of Factor analysis model via EM-algorithm

We first derive a nice lemma for optimization in the context of Gaussian distri-
butions, with which we get results directly for matrices, without element-wise
arguments.

Lemma 5.2. Let Q, Z and Y be square symmetric invertible matrices, and X
and W arbitrary matrices. Assume that the dimensions of these matrices are
such that all operations below make sense. Then,

(5.17)
∂(− log |Q| − Tr(Q−1Z))

∂Q

∣∣∣∣
Q=Q⋆

= 0⇒ Q⋆ = Z

(5.18)
∂(Tr

(
Q−1(WXT +XW T −XYXT )

)

∂X

∣∣∣∣
X=X⋆

= 0⇒ X⋆ = WY −1

Proof. Using ordinary differentiation rules and the previous lemma on ma-
trix derivatives, for any matrix-element ij following holds:

∂(− log |Q| − Tr(Q−1Z))

∂Qij

= −Tr(Q−1 ∂Q

∂Qij
)− Tr(Q−1 ∂Z

∂Qij
+
∂Q−1

∂Qij
Z)

= −Tr(Q−1 ∂Q

∂Qij
)− Tr(

∂Q−1

∂Qij
Z)

= Tr(−Q−1 ∂Q

∂Qij
) + Tr(Q−1 ∂Q

∂Qij
Q−1Z)

= Tr(−Q−1 ∂Q

∂Qij
) + Tr(Q−1ZQ−1 ∂Q

∂Qij
)

= Tr

(
(−Q−1 +Q−1ZQ−1)

∂Q

∂Qij

)

= vec((−Q−1 +Q−1ZQ−1)T )T [0, . . . , 0, 1︸︷︷︸
(i+j)th

, 0, . . . , 0]T .

Hence, the differential of left side of equation 5.17 is zero to all directions
when Q = Z, meaning that, Z is the extremal point of the function Q 7→
− log |Q| − Tr(Q−1Z). This proves the equation 5.17.

Other identity, 5.18, can be derived with similar application of differentia-
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tion rules:

∂(Tr
(
Q−1(WXT +XW T −XYXT )

)

∂Xij

= Tr
(
Q−1 ∂(WXT +XW T −XYXT )

∂Xij

+
∂Q−1

∂Xij
(WXT +XW T −XYXT )

)

= Tr
(
Q−1

(
W (

∂X

∂Xij
)T +

∂X

∂Xij
W T − ∂X

∂Xij
Y XT −XY (

∂X

∂Xij
)T
))
.(5.19)

Using the linearity of the Trace-operator, and the facts that in general Tr(A) =
Tr(AT ), Tr(ATB) = Tr(ABT ), Tr(AB) =

∑
ij AijBji =

∑
ij AjiBij = Tr(BA),

and Q is symmetric, one sees that equation 5.19 takes the form

Tr

(
Q−1(2W T − Y XT − Y TXT )

∂X

∂Xij

)

= Tr

(
Q−1(2W T − 2Y TXT )

∂X

∂Xij

)

= vec(Q−1(2W T − 2Y TXT ))T [0, . . . , 0, 1︸︷︷︸
(i+j)th

, 0, . . . , 0]T ,

where the former equality comes from the assumption Y T = Y . Now, (2W T −
2Y TXT ) ≡ 0 if we set X = WY −1, showing extremal point of equation 5.18,
and concluding the proof.

�

Let us now turn to closed form maximization of the intermediate quantity
Qf , after which the EM-algorithm is completely defined for the Factor analysis
model. Notice that trace of the scalar equals its value and verify that for each
observation i

(qi − ΛUi)
TΨ−1(qi − ΛUi)

= Tr
(

Ψ−1
(
qiq
T
i − qi(ΛUi)T − (ΛUi)q

T
i + ΛUi(ΛUi)

T
))

=: Tr(Ψ−1Zi),(5.20)

where
Zi = qiq

T
i − qiUTi ΛT − ΛUiq

T
i + ΛUiU

T
i ΛT .

When derivating with respect to Λ, the term Ψ−1qiq
T
i vanishes as a constant,

and derivative of Tr(Ψ−1Zi) can be recognized as of the form 5.18. From the
Gaussian assumptions, log-likelihood of the Factor analysis model for n obser-
vations is

log f(q|U ; θ) =
n∑

i=1

{
−d log(2π)− 1

2
log |Ψ| − 1

2
(qi − ΛUi)

TΨ−1(qi − ΛUi)
}
.
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Now, if neglecting the additive (−n
2
(2π)) and multiplicative ( 1

2
) constants,

we find that

Qf (θ, θ′) = E[log f(q|U ; θ)|Q = q, θ′]

∝ E[
1

n

n∑

i=1

(
− log |Ψ| − Tr(Ψ−1Zi)

)
|q, θ′]

= n

(
− log |Ψ| − Tr

(
Ψ−1(

1

n

n∑

i=1

E[Zi|q, θ′])
))

,(5.21)

where the expectation within parentheses can be solved using proposition 4.1.
Note that our Factor analysis model assumed E[U ] = 0 and E[UUT ] = I.
Hence,

E[Ui|q, θ′] = Λ′T (Λ′(Λ′)T + Ψ′)−1qi

and
E[UiU

T
i |q, θ′] = I − Λ′T (Λ′(Λ′)T + Ψ′)−1.

Furthermore,

E[Zi|q, θ′]
= qiq

T
i − qiE[Ui|q, θ′]TΛT − ΛE[Ui|q, θ′]qTi + ΛE[UiU

T
i |q, θ′]ΛT .(5.22)

Above calculation gives us one, and thus all, iterations of the EM-algorithm:

Proposition 5.3 (EM updata for Factor analysis). Given previous values θ′ =
(Λ′,Ψ′), maximize Qf with respect to Ψ by setting

(5.23) Ψnew = diag

(
1

n

n∑

i=1

E[Zi|q, θ′]
)
,

where E[Zi|q, θ′] is given by 5.22 and notation diag(A) refers to a diagonal
matrix with diagonal equal to that of A. Then, maximize Qf with respect to
factor loading matrix Λ by setting

(5.24) Λnew =

(
n∑

i=1

E[Ui|q, θ′]qTi
)(

n∑

i=1

E[UiU
T
i |q, θ′]

)−1

.

Proof. For the update with respect to Ψ, apply lemma 5.2 directly to equa-
tion 5.21, taking into account that the off-diagonal values are fixed to zero by
assumption. Notice then that,

∂

∂Λ
Qf (θ, θ′) =

∂

∂Λ
Tr
(

Ψ−1
(
(
1

n

n∑

i=1

qiE[Ui|q, θ′]T )ΛT

+Λ(
1

n

n∑

i=1

E[Ui|q, θ′]qTi )− Λ(
1

n

n∑

i=1

E[UiU
T
i |q, θ′])ΛT

))
,

and apply lemma 5.2. Multivariate Gaussian belongs to so called exponential
family of distributions, ensuring that these stationary points can be shown to
be maximas. Furthermore, Ψ, by construction, will be proper positive definite
covariance matrix. We leave these details without further attention.
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While EM-algorithm is a successful optimization routine for Gaussian mod-
els, recall that in chapter 4 we gave arguments for estimation via McMC meth-
ods. Thus, it is recommended that one uses McMC estimation when dealing
with sufficiently small models. However, when there are very many items, there
will be abundance of free parameters. In these cases, simple closed form solu-
tion, as in EM or other traditional likelihood-based methods (such as in Lawley
& Maxwell, 1971), may turn out as useful. McMC methods rely on setting up
a chain of random values for each free parameter and latent value, being able
to verify the convergence of each chain to a desired distribution, and on col-
lecting many samples from each chain. The samples are then used to estimate
the quantities of interest. If we are dealing with p items and k uncorrelated la-
tent dimensions, Factor analysis model involves up to p(k+ 1) free parameters,
k(k − 1)/2 of which can be bound (Lopes & West, 2004). Recall, p may be in
order of hundreds, while k is typically less than 10.

We now turn to estimation of GPR-model. Even though we directly observe
the indexing variable, we immediately see that general closed form solution can-
not be obtained, unless we first specify the covariance function K(θ). Even if
we specify the covariance function, such as the Squared exponential of chapter
3, we find that each element depends nonlinearly on index-data and parame-
ters. Hence, we face a lot more complex problem than optimization of Linear
Gaussian model, such as Factor analysis. Yet, rather general approach can be
derived for the noise-free case. By noise-free, we mean that indexing variable
u = x is directly observed. Let us first consider estimation in this case, before
going to more complicated latent data situation.

5.2.2 Estimation of GPR model in noise-free case

Let us use the Squared exponential covariance of chapter 3 as an example. We
need some estimate for the W , v and σξ, collectively referred as θ = (W, v, σξ).
Only after we have set some values for these parameters, can we perform predic-
tion by conditioning to observed data. There are many approaches to such an
estimation problem, but one of the most standards is the Maximum-likelihood
(ML) approach. Here, we simply state that the most likely values, (Ŵ , v̂, σ̂ξ),
are those for which the data density is maximized, that is

(5.25) (Ŵ , v̂, σ̂ξ) = arg max
θ
ϕ((y)ni=1|(x)ni=1, θ).

Many methods for function extremizing exist, implementations of which can
be found from software for numerical computation, or as separate programs.
As this seems standard practice in the field, we take the ML-approach of Ras-
mussen & Williams, (2006), where each element of θ is maximized with a con-
jugate gradient ascent method. Hence, one only needs the partial derivatives
for each element of θ, and the (conjugate) gradient ascent routine seems to
perform well in this simple case.
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Writing the observed outcome data as vectors, Ydata =: y ∈ Rn, our vector
of observations follow the probability density

ϕ(Y |X)(y|x; θ) = (2π)−n/2|K|−1/2e−
1
2
yTK−1y,

whereK is now a function of observations (x1, . . . , xn) and parameters (W, v, σξ) =
θ. As previously shown, log-likelihood is then proportional to

(5.26) ℓ(θ) = logϕ(Y |X)(y|x; θ) = −n
2

log(2π)− 1

2
log |K(θ)| − 1

2
yTK(θ)−1y,

where K is given, as in chapter three, by Σ + σξIn, where Σ is formed as in
equation 3.6. Using above lemma 5.1 on matrix derivatives, we immediately
get derivatives of log-likelihood for the general K(θ). These are

(5.27)
∂ℓ(θ)

∂θk
=

1

2
yTK(θ)−1 ∂K(θ))

∂θk
K(θ)−1y − 1

2
Tr(K(θ)−1 ∂K(θ)

∂θk
),

where k indexes all the free parameters that are to be estimated. The compu-
tation so far generalizes to every differentiable covariance function. From this
point onwards, we need to plug-in the specific choice.

Thus, it is left to compute ∂K(θ))
∂θk

. For the Squared exponential covariance,
derivative with respect to σξ is simply In, and that with respect to v equals
Σ. However, elements of W , θk = Wkk, are slightly more elaborate case. Let
us express the covariance function (eq. 3.2) as vg(W ) where g is real-valued

function g(W ) := exp
(
− 1

2
(xi − xj)TW−1(xi − xj)

)
. Again with traditional dif-

ferentiation rules and above lemma, we find that

(5.28)
∂g(W )

∂Wkk
= −1

2
αT

∂W

∂Wkk
αe−

1
2

(xi−xj)TW−1(xi−xj),

where α := W−1(xi − xj). Thus, for each element (i, j) of ∂K(θ))
∂Wkk

we need to

compute above values, evaluate v ∂g(W )
∂Wkk

, and further assign to equation 5.27 used
in the chosen gradient ascent algorithm. However, before this, one small matter
requires attention. In the definition of the Squared exponential, we constrained
parameters to be positive. This applies to σξ as well, since it does not make
sense for variance to be negative. Standard trick for applying this constraint
in gradient optimization is to optimize logarithm of parameters instead of the
true parameters. That is, in gradient ascent, we take each parameter to be
θi = log θi⋆. In result, all functions of theta, such as g(W (θ⋆)) take a form
g(W (exp(θ))). As now the true θ⋆ is exponential, it is constrained to be positive.

These, more or less standard, computations apply only when indexing vari-
able x = u has been directly observed. For us, the latent u of interest is not di-
rectly observed. Only some noisy estimate, x = AT q, of it can be observed. No-
tice, that if we have estimated the Factor analysis model and use the proposition
4.1, we get an optimal (see theorem 3.2) estimate x = Atq = ΛT (ΛΛT + Ψ)−1q,
as well as error estimate for it. Notice however, that error estimate given by
E[UUT |Q = q,Λ,Ψ] is an overly optimistic one, as it does not take into ac-
count the uncertainty in estimates for Λ and Ψ. Yet, it is comforting that some
estimate can be easily derived.
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5.2.3 Estimation of GPR model with noisy indices

We would like to do something similar to GPR model that we did for Factor
analysis, that is, estimate it despite the fact that we have not observed predictor
variable U . In the beginning of this chapter, we gave a general discussion about
the methods for this kind of situation. Let us now use this information to
examine the case of GPR model when index variable is a latent variable of
Factor analysis model. In the case of EM-algorithm, we would need to be able
to compute the quantity

(5.29) Qϕ(θ; θ′) =
∫

logϕ(y|u; θ)p(u|q; θ′)du,

where p(u|q; θ) is the Gaussian density given by proposition 4.1, and

logϕ(y|u; θ) =: (ℓ(θ)|U = u)

is the log-likelihood given U = u. Unfortunately, now covariance structure in
this likelihood, K(θ) =: K(θ, (U1, . . . , Un)), depends on latent observations on
a nonlinear way. This is likely to make the integral intractable. Hence, EM-
approach, does not seem to be a good choice. Even if we would be able to
solve the integral, we would still face the same problem as in the noise-free
case. If K(θ) is complicated function, integral is not likely to be much simpler,
and it will be difficult to optimize this in closed form. We would also need to
be able to integrate over the absolute value of determinant of K(θ), and to
solve the resulting expression. This strategy could be investigated for simple
covariance structures, like the linear one C(ui, uj) = uTi Wuj, or C(ui, uj) =
(ui − uj)

TW (ui − uj). For general covariance, we take it as infeasible, and
proceed to other choices.

We could attempt to set-up the McMC chain, with posterior distribution of
θ as its invariant distribution. However, to derive a simple sampler, like Gibbs
sampler, we would need to solve so called full conditional distribution to all
parameters θ. In general case, this cannot be done. Again, maybe for some
special cases. It might be possible to construct some other sampler (Cappé
et al., 2005, chap. 6 & 7). While undoubtedly computationally heavy, this
approach could be examined by a researcher well-versed with McMC methods.
Instead of Markov chains, we observe that a Monte Carlo estimate of integral in
5.29, almost, brings us back to the noise-free case. As in noise-free case, we still
cannot solve the closed form maxima for Monte Carlo approximation of 5.29,
as would be required for EM. However, we sure can compute the derivatives

(5.30)
∂

∂θi
ℓ(θ) ≈ 1

m

m∑

j=1

∂

∂θi
logϕ(y|u(j); θ),

where (u(1), . . . , u(m)) is an i.i.d sample from the distribution p(·|q; θ′), given
by proposition 4.1. Thus, we are able to perform gradient ascent, in spite of
the latent index variable. Clearly, ∂

∂θi
logϕ(y|u(j); θ) is computed just as in the
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noise-free case where x = u(j). Hence, we can do a Monte Carlo version of the
standard Gradient ascent algorithms, but what is the cost of this flexibility?

If we wish to compute gradient at all points (u(j))mj=1, we need to invert n-
by-n matrix K(θ) at least m times (see eq. 5.27). Inverting K(θ) takes in order
of n3 basic computer operations (Rasmussen & Williams, 2006; Rue & Held,
2005), where n is the number of observations1. Hence, we need in order of mn3

operations per each gradient evaluation. In practice, both m and n, may exceed
1000, meaning that every single iteration of gradient ascent takes over 1012

operations. Recall also that, for gradient ascent to be effective, it is desirable to
perform line-searches in order to find correct step-size (to gradient direction).
Hence, for each gradient-value, one should evaluate logϕ(y|·; θ) with several
values, and this also contains the inverse of K(θ). Combine these observations
with the fact that it may take several iterations of gradient ascent to get near
the maxima, and even modern computers start to edge toward their maximum
capacity.

An average personal computer fairly rapidly maximizes (or at least finds
good) parameters in the noise-free case, for over 1000 observations. In this con-
text, data sets from several hundreds to few thousands observations start to
be fairly large, often largest available. However, the need to do every gradi-
ent evaluation m times for the Monte Carlo approximation starts to tax more
heavily than is be desirable. According to Wikipedia2, 1012 floating point op-
erations take about 22-23 minutes of processing time on a modern personal
computer, about 1.34 seconds if one computes using graphics processing card,
and cirka one millisecond on current supercomputers. While graphics card im-
plementation seems to drop the computational burden near noise-free case, in
practice these approaches are complicated by slow transfer of data between
graphics card memory and computer memory. We assume that target group
for the method has no easy access to supercomputers. Thus, it is desirable to
do something for the amount of computations.

Given the above discussion, it seems that the best way to estimate GPR
model, in this latent variable context, is to construct a good Stochastic gradient
algorithm. This sets the size of Monte Carlo sample to 1 per each iteration.
As discussed, one may in practice take larger amount of Monte Carlo samples,
but the point is that this amount can be significantly smaller than would be
required for brute force Monte Carlo. However, classical Robbins-Monro-type
algorithms are typically found to be inadequate in practice, only converging
to correct maxima when initiated nearby (Gu & Zhu, 2001). Algorithms that
supplement classical approach with second-order (Newton-Rhapson-type) in-
formation have lead to good results in more challenging estimation tasks (Gu
& Zhu, 2001; Cai, 2010). It is relatively straightforward to derive the Hessian
of logϕ(y|u(j); θ) by derivating equation 5.27 again with respect to θj , using

1If K(θ) is, or we can make it, sparse, this may reduce number of operations to O(n), but
we assume such trick is not available. Matrix is said to be sparse, if most of its elements are
zeros.

2http://en.wikipedia.org/wiki/Orders_of_magnitude_(computing)
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lemma on matrix derivatives 5.1. Letting indices k (in 5.27) and j run through
all parameters gives elements of the Hessian matrix. Louis’ identity can be used
to parse together the Hessian of log-likelihood. These algorithms can be shown
to converge even if latent index is drawn from the Markov chain (Cai, 2010).
Hence, currently best estimation option might be something like the following
algorithm, adopted from Cai, (2010). We present it only for completeness, but
do not explicitly use it.

Algorithm 5.3 (Stochastic gradient algorithm for latent variable GPR). Take
a sequence (γj)

∞
j=1 satisfying

γj > 0, lim
j→∞

γj = 0,
∑

j

γj =∞.

Use EM or maximum likelihood procedures to get initial values for Factor anal-
ysis parameters Ψ,Λ. Run Gibbs sampler, starting from these values, until it
appears to produce values from the desired distribution. Set Γ0 to a positive
definite matrix with as many elements as square of number of elements in θ.
Choose θ(0) and iterate, until sufficient convergence, from j = 1

• Stochastic imputation: using current value of θ(j) draw mj sets of la-
tent index values from the Factor analysis Gibbs sampler (Lopes & West,
2004).

• Stochastic approximation: compute approximation for the gradient

sj+1 =
1

mj

mj∑

k=1

▽θℓ(θ(j), uk),

where {uk} are previously drawn latent index values and ▽θℓ(θ(j), uk) is
gradient for the full model log-likelihood (i.e. including combination of
GPR and Factor analysis models). Compute recursive approximation for
complete data expected information/Hessian matrix

Γj+1 = Γj + γj

(
1

mj

mj∑

k=1

−▽2
θ ℓ(θ

(j), uk)− Γj

)
.

• Robbins-Monro update: Set the new parameter estimate to

θ(j+1) = θ(j) + γj(Γ
−1
j+1sj+1).

mj may be either fixed value, or change as a function of iteration number
(Cai, 2010). Due to Newton-Rhapson element, this Robbins-Monro -type algo-
rithm takes large initial steps toward correct maxima. It further averages noise
over iterations with decreasing sequence (γj)

∞
j=1, which is why it converges,

even though each iteration of gradient involves noise. Choice of the sequence
(γj)

∞
j=1 influences to practical success of algorithm. One might start with a

choice of harmonic sequence, ( 1
j
)∞j=1.
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Explicit construction of this algorithm, not to mention possible two-step
and stopping criterion modifications (Gu & Zhu, 2001), takes more parameter
tweaking and details than is sensible to present here. One may also encounter,
more or less, unexpected difficulties when implementing such algorithm. This
is because Newton-Rhapson-like procedures do not generalize as well as first-
order gradient ascent methods, but may require tuning for specific covariance
structure. Vulnerability of simple Newton-Rhapson procedure (without line-
search) can be easily shown with below example. Consider optimization of
simple one-dimensional deterministic function.

(5.31) g(w) = e−
1
2
w2

In this case, the gradient is

g′(w) = −we− 1
2
w2

,

and the Hessian is given by

g′′(w) = (w2 − 1)e−
1
2
w2

.

Combining these, we see that single Newton-Rhapson iteration is of the form

(5.32) wn+1 = wn − g′′(wn)−1g′(w) = wn +
wn

w2
n − 1

.

If we start the iteration from w0 > 1, we will, in each iteration, move farther
from the maxima w = 0. Even if we were doing line-searches to avoid wrong
directions, it is evident that above iteration is numerically unstable near w =
±1. Thus, finding good coefficient γn numerically may be hindered by tendency
of Newton-Rhapson algorithm to produce dubious step-sizes in some regimes
of parameter space. A cursory look to Squared exponential covariance function
is enough to tell that above example may have practical implications as well.

In any case, we recommend starting with a search for algorithm of the above
type. Averaging with respect to θ(j)-sequence may improve the performance of
this algorithm (Cappé et al., 2005). Compared to otherwise computationally
expensive procedures in GPR estimation, this requires no further resources.
There exist large literature, with convergence proofs, on Stochastic gradient
procedures, and one may freely explore this. Instead of going to questions of
practical implementation, we will continue with a question: is it actually pos-
sible to use this model after we have managed to estimate it? That is, can we
make a prediction on a new point u given that we do not have the (now latent)
index-observations for which to condition. Recall, that entire utility of GPR ap-
proach lies in the closed form formula 3.3 for conditional distributions, which
allows handy predictive equations of chapter 3. Have we done all these efforts
just to find out that we cannot use the model we have estimated? In next, and
last, chapter we will come up with an approximative approach, originally due
to Girard, (2004), that allows flexible use of GPR model in spite of the noise
in index-observations. For this, the Squared exponential (or linear) covariance
function will turn out to be a helpful choice.
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6 Prediction with noisy observations

Ones we have managed to estimate the parameters of the covariance function,
we want to make predictions, inter- and extrapolation, as in chapter 3. That
is, via the use of the theorem 3.3 on the conditionals of Gaussian distribu-
tion. Recall, this was the primary motivation in GPR, allowing for automatic
non-linear smoothing and prediction. If we have estimated the Factor analysis
model, then it is possible to use some estimate for the unobserved latent/true
values, u. This should reduce noise from the indexing variable of GPR, as proper
estimate contains less noise than simple average of some items. One may es-
timate u for individual i either as average of simulated values from the Gibbs
sampler, or simply via proposition 4.1 as the mean of conditional distribution
given the observations of items qi and estimated parameters:

(6.1) ûi = ΛT (ΛΛT + Ψ)−1qi,

where Ψ and Λ are estimated Factor analysis parameters. Then, ûi will be
normally distributed with ”error” variance

(6.2) Υ = I − ΛT (ΛΛT + Ψ)−1Λ.

That is, although latent variable estimates from Factor analysis reduce noise, as
do simple averaging scales, we still do not observe the noise-free index we wish
for. In fact, reliability indices of psychometric scales are thought to be accept-
able if over 0.7, reflecting the acceptance within the community for measure-
ments with nearly 1/3 of variance being random noise. In practice, reliabilities
of standard scales vary between 0.6 and 0.95.

In this case one might turn to an approximate Gaussian process approach,
pioneered by Girard, (2004) in the context of sequential predictions. Here we
use another Gaussian process that accommodates its covariance function to
the noise in observations, in a correct manner. We present an example for the
popular Squared exponential covariance function, which is one of the few that
allow an analytic derivation. It might, however, be the case that a researcher
has no access to questions qi, but only to some summary xi which estimates ui
less optimally than would be the case for estimate 4.1 with parameters derived
from a large population sample. Sometimes researchers also wish to use some
standard scoring derived from qi, instead of the more optimal prediction that
could be achieved in above described manner. In chapter four we defined this
scoring scheme as AT qi for some pre-defined matrix A. Clearly, this variable has
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different covariance/error properties. As discussed in the chapter four, between
individual (population) covariance of this variable decomposes as

Cov(ATQ) = ATCov(Q)A = ATΛΛTA + ATΨA,

where the part ATΨA corresponds to Gaussian measurement noise. Thus, in
the case of pre-defined scale,

Υ := diag(ATΨA)

could be taken as error variance estimate for all individuals i, where diag(ATΨA)
refers to diagonal matrix with diagonal values equal to those of ATΨA. Reason
why we do not use entire matrix ATΨA is that we are not interested about
correlation of errors in the population, but about their magnitude in used mea-
sures. Let us now see how these error variance estimates can be put to use.

6.1 Noise incorporating covariance function

Again, before derivation of the method itself, we introduce couple results that
are needed. First, Law of total covariance, is a consequence of the definition
of conditional expectation. Second, is simply re-expression for the product of
Gaussian density functions.

Lemma 6.1 (Law of total covariance). Given a σ-algebra G, covariance of two
random variables, X and Y , decomposes as

(6.3) Cov[X, Y ] = E[Cov[X, Y |G]] + Cov[E[X|G], E[Y |G]].

Notice that σ-algebra G could be generated by some third variable, say Z.
Then G = σ(Z), and E[X|G] = E[X|Z] etc.

Proof of lemma 6.1. Proof uses the definition of conditional expectation, lin-
earity of expectation, and some algebraic manipulation. Simply check that

Cov[X, Y ] = E[XY ]−E[X]E[Y ]

= E[E[XY |G]]−E[E[X|G]]E[E[Y |G]]

= E[Cov[X, Y |G] + E[X|G]E[Y |G]]− E[E[X|G]]E[E[Y |G]]

= E[Cov[X, Y |G]] + E[E[X|G]E[Y |G]]− E[E[X|G]]E[E[Y |G]]

= E[Cov[X, Y |G]] + Cov[E[X|G], E[Y |G]]

�

Remember that, if inverse of the matrix A exists, then it holds for the
determinant that |A−1| = 1/|A|, and |AB| = |A||B|, when the product is
defined. Furthermore, for invertible matrices, A + B = A(B−1 + A−1)B. In
addition, following result holds for matrices.
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Lemma 6.2 (Woodbury matrix identity). Given that the inverses exist and
all matrix multiplications are defined,

(6.4) (A+ UBV )−1 = A−1 − A−1U(B−1 + V A−1U)−1V A−1

Proof. By direct verification,

(A+ UBV )
[
A−1 −A−1U(B−1 + V A−1U)−1V A−1

]

= I + UBV A−1 − (U + UBV A−1U)(B−1 + V A−1U)−1V A−1

= I + UBV A−1 − UB(B−1 + V A−1U)(B−1 + V A−1U)−1V A−1

= I + UBV A−1 − UBV A−1 = I

�

Setting U and V to identity matrices in above lemma, we get a useful
decomposition

(A+B)−1 = A−1 − A−1(B−1 + A−1)−1A−1 = B−1 −B−1(A−1 +B−1)−1B−1.

By using above identities we are able to prove the final lemma needed to derive
the actual method of interest.

Lemma 6.3 (Product of Gaussians). Let ϕa be the density of the Gaussian
distribution Nd(a, A), and ϕb that of the distribution Nd(b, B). Then the product
of ϕa and ϕb is

(6.5) ϕa(x)ϕb(x) = zϕh(x),

where ϕh is the density of the distribution Nd(h,H), where h = H(A−1a+B−1b)
and H = (A−1 +B−1)−1. z is given by

(6.6) z =
1

(2π)−d/2|A+B|1/2 e
1
2

(a−b)T (A+B)−1(a−b),

which can be recognized as either the density of a distributed as Nd(b, A + B)
or density of b distributed as Nd(a, A+B).

Proof. Check that

ϕa(x)ϕb(x) = (2π)−d/2|A|−1/2(2π)−d/2|B|−1/2×
e−

1
2

(x−a)TA−1(x−a)− 1
2

(x−b)TB−1(x−b)

= (2π)−d/2|A|−1/2|H1|1/2|B|−1/2(2π)−d/2|H|−1/2×
e−

1
2

(xT (A−1+B−1)x−xT (A−1a+B−1b)−(A−1a+B−1b)T x+aTA−1a+bTB−1b

= (2π)−d/2|A(A−1 +B−1)B|−1/2(2π)−d/2|H|−1/2×
e−

1
2

(xT (A−1+B−1)x−xTH−1H(A−1a+B−1b)−(A−1a+B−1b)THH−1x+aTA−1a+bTB−1b)
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= (2π)−d/2|A+B|−1/2(2π)−d/2|H|−1/2×
e−

1
2

(xTH−1x−xTH−1h+hTH−1x+hTH−1h−hTH−1h+aTA−1a+bTB−1b)

= ϕh(x)(2π)−d/2|A+B|−1/2e−
1
2

(aTA−1a+bTB−1b−hTH−1h).

Thus, it is left to show that the term after ϕh(x) equals z. To do this,
we must show that aTA−1a + bTB−1b − hTH−1h in the exponent equals (a −
b)T (A+ B)−1(a− b). This can be done using Woodbury matrix identity to H,
expanding with respect to both, A and B. An observation that A(A+B)−1 =
(I + A−1B)−1 = (A−1 +B−1)−1B−1 is also needed. Now, notice that

hTH−1h = (A−1a +B−1b)TH(A−1a+B−1b)

= aTA−1HA−1a+ bTB−1HB−1b+ 2aTA−1HB−1b

= aTA−1a− aT (A+B)−1a+ bTB−1b− bT (A+B)−1b+ 2aTA−1A(A +B)−1b

= aTA−1a+ bTB−1b−
(
aT (A+B)−1a− 2aT (A+B)−1b+ bT (A+B)−1b

)

= aTA−1a+ bTB−1b− (a− b)T (A+B)−1(a− b).

Replacing hTH−1h in ϕh(x)(2π)−d/2|A + B|−1/2e−
1
2

(aTA−1a+bTB−1b−hTH−1h)

with above derived version completes the proof.

�

Next, we will start with estimated Factor analysis and GPR models, under
Squared exponential covariance. We will derive the mean and covariance of
(non-Gaussian) stochastic process indexed by noisy observations. For observa-
tions Yi and Yj,

(6.7) E[Yi|Ui] = 0,

and

(6.8) Cov[Yi, Yj|Ui, Uj ] = C(Ui, Uj).

Above we constructed a model, according to which, Xi = Ui + Ξi, where
Ξi ∼ Nd(0,Υ). Here, d is the number of scales, or dimension of the scale, de-
pending on whether ”scale” is used to refer to a multidimensional construct or
a unidimensional one. There is no practical difference. Now, Ui is a vector of
”true” values of behavioral dimensions/traits for the individual i. Ξi is mea-
surement noise/error whose covariance is estimated from the Factor analysis
model, as discussed in the above chapter. It turns out that we can still com-
pute the mean and covariance of the resulting process, as a function of the
observed X. At this point, we consider Factor analysis model only regarding
to what it tells about the error Ξ. Due to symmetry of Gaussian distribution,
X = u + Ξ ∼ N(u,Υ) implies U = x + Ξ ∼ N(x,Υ), provided that we start
by thinking u as non-random. More principled way to derive this result would
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be to think that we do not wish to say anything about the distribution of U a
priori, and use improper Bayesian prior, 1. Then, using Bayes theorem, we see
that posterior distribution of U given X is equal to N(X,Υ).

Let us assume in the following that the GPR-model of chapter three holds
for the true value U . As now X is a measurable function (sum) of both, U
and Ξ, it is σ((U,Ξ))-measurable. Since E[Y |U ] = 0 by the model assumption,
according to Tower property,

(6.9) E[YUi|Xi] = E[E[YUi|Ui]|Xi] = 0.

Similarly, due to Law of total covariance,

Cov[YUi, YUj |Xi, Xj]
= E[Cov[YUi, YUj |Ui, Uj]|Xi, Xj] + Cov[E[YUi|Ui], E[YUj |Uj ]|Xi, Xj ]
= E(Ui,Uj)[Cov[YUi, YUj |Ui, Uj]|Xi, Xj ].(6.10)

Let us now denote the covariance function of noisy observations as

Cn(xi, xj) := Cov[YUi, YUj |Xi = xi, Xj = xj ].

By noticing that individual/observation i is independent from j, from equation
6.10 we find that

(6.11) Cn(xi, xj) =
∫ ∫

C(ui, uj)ϕxi(ui)ϕxj(uj)duiduj,

where ϕxi is the density of Nd(xi,Υ), and ϕxj that of Nd(xj,Υ).

Theorem 6.1 (Covariance function for noisy observations). Let ui and uj be
observed with noise, such that xi = ui + ξi and xj = uj + ξj, where ξi and ξj
are distributed as N(0,Υ). Let {Yu} be a Gaussian process with zero mean and
Squared exponential covariance function of equation 3.2. Then, the covariance
of observations Yi and Yj, given the noisy observations xi and xj, is

(6.12) Cn(xi, xj) = v|Id + 2W−1Υ|e− 1
2

(xi−xj)
T (W+2Υ)−1(xi−xj)

Proof. Squared exponential covariance function C : Rd×Rd → R of equation
3.2 is of the form

C(ui, uj) = ve−
1
2

(ui−uj)
TW−1(ui−uj) =: γϕuj(ui),

where ϕuj is the density of distribution Nd(uj,W ), and

γ = v(2π)d/2|W |1/2.

According to equation 6.11, to find the covariance function Cn(xi, xj), we need
to evaluate the integral

(6.13) Cn(xi, xj) = γ
∫ ∫

ϕuj (ui)ϕxi(ui)ϕxj(uj)duiduj.
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Using the product of Gaussians equation (6.5), with analoguous indexing
for the constant z as for Gaussian densities, and integrating over ui, we find
that

∫
ϕuj (ui)ϕxi(ui)dui

= zxi(uj)
∫
ϕh(ui)dui

= zxi(uj)

= (2π)−1/2|W + Υ|−1/2e−
1
2

(uj−xi)T (W+Υ)−1(uj−xi)

Using the product of Gaussians equation again and further integrating this
result with respect to uj, we get

γ−1Cn(xi, xj) =
∫
zxi(uj)ϕxj(uj)duj

= (2π)−d/2|W + 2Υ|−1/2e−
1
2

(xi−xj)
T (W+2Υ)−1(xi−xj).

By multiplying both sides with a constant γ, we arrive to the desired result.

�

Thus, for noisy observations, this Cn is the covariance function of the ob-
servations. However, it is not the covariance function between Yu, ”observed”
in the ”true” value u ∈ Rd, and Yx, observed for the ”noisy index” xi. This co-
variance is also needed, because we are interested about the predictive means
of the process for the true values. This is easily obtained from theorem 6.1
by letting 2Υ =: (Υu + Υxi) → (Υxi), reflecting the fact that uncertainty of
another input is disappearing. Thus, we can let the covariance function depend
on whether input was observed with noise or not.

Unfortunately, while deriving covariance for the noisy observations, we have
ended up with a process that is not Gaussian. This implies that formulas al-
lowing easily tractable analytic conditionals no longer exist (theorem 3.3 does
not hold). Letting C(U) denote covariance structure derived from C and true
observations U , characteristic function takes the form

E[eiY
T θ|X] = EU [E(Y |U)[e

iY T θ]|X]

= EU [e−
1
2
θTC(U)θ|X]

=
∫
e−

1
2
θTC(u)θϕ(u|X)(u)du,

where C is highly non-linear function of U , involving another exponential
function. Thus, the characteristic function cannot be of the Gaussian form
e−

1
2
θTCn(X)θ, where Cn is matrix depending only on X.
While it is not easy to compute conditional distributions for this new process

that is no more Gaussian, let us recall why we started with Gaussian processes
at first place: They are flexible approximations to non-linear functions, provided
that we find suitable covariance. As we now have derived a suitable covariance
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in theorem 6.1, we can simply use this as a covariance for the approximating
Gaussian process. As means are zero for both processes, this can also be seen
as a second order approximation.

In practice, we proceed just as in chapter three, but replace Cn for covariance
function C for actual observations, and

Cp(xi, uj) := v|I −W−1Υ|−1/2e−
1
2

(xi−uj)T (W+Υ)−1(xi−uj)

for the value uj for which we want the prediction of Yuj given the observed data,
{(x1, y1), . . . , (xn, yn)}. We also incorporate outcome measurement noise as in
chapter three, by using covariance K = Σ + σξI, where Σ is derived from Cn
similarly as in equation 3.6. It has been shown that accounting for the additional
noise from measurement process significantly enhances the learning process and
subsequent prediction, but the estimation of the covariance form of eq. 6.12 is
more challenging due to additional parameters (Dallaire, Besse & Chaib-draa,
2009), that is, due to need to estimate noise covariances Υ. As both, W and Υ,
contain parameters to estimate, their products and sums induce trade-offs to
likelihood function, resulting in multiple local maximas. This problem can be
alleviated either by making strong prior assumptions for the model parameters
(as in Dallaire, Besse & Chaib-draa, 2009) or by more elaborate approach
presented in the previous chapters of current work. Here, all of the parameters
have already been estimated/learned via developments of previous chapters,
and we use Girard’s approximative approach only to smoothing and prediction.

6.2 Interpreting the Squared exponential

As an afterthought for the current chapter, we now digress a bit to theoretical
material of chapter 3. It turns out that we can give an interpretation to the
Squared exponential covariance function, using Product of Gaussians lemma.
Recall that there is an orthogonal expansion for the covariance function (Mer-
cer’s theorem). For the Squared exponential, it can be found in practice by
starting from radial basis functions and using heuristics (MacKay, 2003). Con-
sider taking Gaussian i.i.d. prior ξ ∼ Nk(0, λI) over finite set, H, of indices on
the real-interval [hmin, hmax], and modeling y = f(x) with a nonlinear regres-
sion using k radial basis functions,

f(x) =
∑

h∈H

ξhψh(x), ψh(x) := e−
(x−h)2

2r2 ,

where {h}h∈H are some constants in the interval. Then, the covariance function
is of the form

C(x, x′) = E[f(x)f(x′)] =
∑

h

∑

h′
E[ξhξh′]ψh(x)ψh′(x

′) = λ
∑

h

ψh(x)ψh(x
′).

If we now fill the interval [hmin, hmax] densely, letting λ = S/∆h scale as the
number of basis functions per unit interval, ∆h, the sum can be thought of as

65



an integral

C(x, x′) = S

hmax∫

hmin

e−
(x−h)2

2r2 e−
(x′−h)2

2r2 dh.

By now taking hmax → ∞ and hmin → −∞, and applying similar trick as for
derivation of noisy covariance above, we gain some insight. That is, by using
Product of Gaussians lemma and integration with respect to h, we find that

C(x, x′) =
√
πr2Se−

(x−x′)2

4r2 .

Using re-parameterization to more familiar terms, we find that this is nothing
but the Squared exponential covariance in one dimensional case, that is,

C(x, x′) = ve−
1
2

(x−x′)2

W .

In general, it is not a trivial feat to be able to perform regression with infi-
nite Gaussian shaped basis functions without overfitting to observations. With
current constructions, it seems that this can be done in spite of the noise in
predictor (independent) variables.
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7 Summary and afterword

We have now derived a flexible non-parametric regression framework for out-
come prediction using noisy behavioral measurements. ”Noisy” meaning that
desired values cannot be observed without significant error. The suggested plan
of action is the following. Collect data and simultaneously estimate Factor
analysis and GPR model, using Markov chain Monte Carlo Stochastic gradient
estimation method. Here, we need the stochastic approach because we do not
directly observe the latent variable of the Factor analysis model. This way, in
spite of not observing index variable of GPR, we are able to estimate GPR
model.

Once we have estimated GPR model, we still cannot use it for prediction
via conditioning, because we do not have observations from the correct index
variable. To circumvent this short-coming, use results from Factor analysis to
derive a measurement scale, and its error properties. Then, set-up (chapter six)
an approximating Gaussian process with covariance function that is otherwise
identical, but models the index-variable noise as well as the outcome noise.
Here, the measurement scale response is used as the indexing variable, for
which we know the error properties. With this setting, we are able to perform
statistical inference in the infinite-dimensional function space, whose elements
are functions from unobserved latent variable to real-valued outcome variable.

While this is a natural point to end this mathematics thesis, it is obvious
that above developments open up a much larger research program. For one
thing, practical aspects of the method require a lot more attention. In spite
of the theoretical convergence proofs, it is not obvious how effective stochastic
gradient approach is in this context. In addition, we made somewhat suscepti-
ble approximation with another Gaussian process, having the so called ”noisy
covariance function”. While simulation experiments indicate that this approx-
imation works well (Girard, 2004; Dallaire, Besse & Chaib-draa, 2009), topic
hardly can be considered as thoroughly researched. Furthermore, it is fairly
safe to say that few (if none) have previously considered what would be op-
timal covariance structure for outcome process indexed by some behavioral
construct (psychological, psychiatric, sociological, or other such, theory). To
give an example, it is relatively open question how atherosclerosis risk varies
as a function of human temperament traits (Hintsanen, et al., 2009). The fact
that one needs to build everything around the measurement noise in indices
considerable limits the available practical options for the covariance form, pro-
vided that one requires for empirical verification (as one should). Still, room
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for research on covariance form exist, starting from linear covariance, which is
also analytically tractable similarly to the Squared exponential (Girard, 2004).

If there would be growing interest to GPR approach within the behavioral
research fields, this might open interesting possibilities in the field of exper-
imental design, as discussed in the end of chapter three. If one could derive
knowledge about the appropriate covariance function, and a link to a Markov-
associated process, it might be possible to gain information on the optimal
design prior the data collection (in the sense of minimizing uncertainty). This
might help in the frequently encountered situation when collecting outcome
observations is ”expensive”, economically or humanly. This kind of research
must be seen, at best, as a fairly distant future. Reliable information on co-
variance forms would be required. However, there are other directions in the
immediate near future that should be taken, for GPR approach to ever get this
far. Namely, these are the very same steps that have led to popularity of GPR
in the Machine learning and Geostatistics communities. One should show that
it is effective in practice, beyond other, conceptually simpler, approaches.

What direction should be taken next in the research on Gaussian process ap-
proach to behavioral prediction? In my opinion, the best way to collect interest
on the topic, and thereby needed resources, would be to show that it con-
vincingly outperforms the standard linear (and perhaps quadratic) regression
approaches, using fairly large data set and cross-validation (Arlot & Celisse,
2010). Reason to favor validation data -based methods over other model selec-
tion methods, is that they provide results seemingly independently of model
assumptions. As we are speaking of prediction, it is important to ensure that
we truly are able to predict new data points that were not used in model esti-
mation. We conclude the current treatment of topic to these considerations.

68



Bibliography

Adler, R.J. and Taylor, J.E. (2007). Random Fields and Geometry. Springer-Verlag.

Arlot, S. and Celisse, A. (2010). A survey of cross-validation procedures for model
selection. Statistics Surveys, 4, 40-79.

Cai, L. (2010). High-dimensional exploratory Item factor analysis by a Metropolis-
Hastings Robbins-Monro algorithm. Psychometrika, 75, 1:33-57.

Cappé, O., Moulines, E. and Rydén, T. (2005) Inference in Hidden Markov Models.
Springer, New York, USA.

Carroll, R.J., Ruppert, D., Stefanski, L.A. and Crainiceanu, C.M. (2006) Measure-
ment Error in Nonlinear Models: A Modern Perspective (2nd Ed.). Chapman
& Hall/CRC, Boca Raton, USA.

Cloninger, C.R., Przybeck, T.R., Svrakic, D.M. and Wetzel, R.D. (1993). The Tem-
perament and Character Inventory (TCI): a guide to its development and
use. Center for Psychobiology of Personality, Washington University ST. Louis
(Mo).

Costa, Jr. P.T. and McCrae, R.R. (1985). The NEO-PI personality inventory manual.
Odessa, FL: Psychological Assessment Resources.

Cudeck, R. and MacCallum, R.C. (Eds.) (2007), Factor Analysis at 100: Histori-
cal Developments and Future Directions. Lawrence Erlbaum Associates, Inc.,
Mahwah, New Yersey, USA.

Dallaire, P., Besse, C. and Chaib-draa, B. (2009). Neural Information Processing:
Lecture Notes in Computer Science, 2009, C.S. Leung, M. Lee J.H. Chan
(Eds.), Volume 5863/2009, 433-440, DOI: 10.1007/978-3-642-10677-4_49

Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977). Maximum Likelihood from In-
complete Data via the EM Algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), 39, 1:1-38.

Ellis, S.P. (2004), Instability of Statistical Factor Analysis, Proceedings of the Amer-
ican Mathematical Society, 132, 6:1805-1822.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the
Bayesian restoration of images. IEEE Transactions in Pattern analysis and
Machine Intelligence, 6, 721-741.

Girard, A. (2004). Approximate Methods for Propagation of Uncertainty with Gaus-
sian Process Models. A thesis submitted to the University of Glasgow for the
degree of Doctor of Philosophy. Available in www.dcs.gla.ac.uk/ rod/publica-
tions/Gir04.pdf

Gu, M.G. & Zhu, H. (2001). Maximum likelihood estimation for spatial models by
Markov chain Monte Carlo Stochastic approximation. Journal of the Royal
Statistical Society-Series B, 63, 339-355.

69



Hewitt, E. & Ross, K.A. (1997). Abstract Harmonic Analysis, Volume II: Struc-
ture and Analysis for Compact Groups, Analysis on Locally Compact Abelian
Groups. Springer-Verlag, Berlin, Germany.

Hintsanen, M., Pulkki-Råback, L., Juonala, M., Viikari, J.S.A., Raitakari, O.T.,
Keltikangas-Järvinen, L. (2009) Cloninger’s temperament traits and early
atherosclerosis: The Cardiovascular risk in young Finns study. Journal of Psy-
chosomatic Research, 67, 1:77-84.

Jennrich, R.I. (2007). Rotation methods, algorithms, and standard errors. Factor
Analysis at 100, Historical Developments and Future Directions (Chapter 15,
Eds. Cudeck, R. & MacCallum, R.C.), Lawrence Erlbaum Associates, Inc.,
Mahwah, New Yersey, USA.

John, O.P., Robins, R.W. & Pervin, L.A. (Eds.) (2008). Handbook of Personality:
Theory and Research (third edition). The Guilford Press, New York, USA.

Klenke, A. (2008) Probability Theory: A Comprehensive Course. Springer-Verlag,
London, UK.

Lawley, D.N. and Maxwell, M.A. (1971), Factor Analysis as a Statistical Method.
Butterworth & Co, London, England.

Lopes, H.F. and West, M. (2004) Bayesian model assessment in Factor analysis.
Statistica Sinica, 14, 41-67.

MacKay, D.J.C. (2003). Information theory, Inference, and Learning Algorithms.
Cambridge University Press, Cambridge, UK.

Magnus, J.R. and Neudecker, H. (1991). Matrix Differential Calculus with Appli-
cations in Statistics and Econometrics, Revised Edition. John Wiley & Sons,
Chippenham, UK.

Marcus, M.B. and Rosen, J. (2006). Markov processes, Gaussian processes, and Local
times. Cambridge University Press, New York, USA.

Martin, J.K. and McDonald, R.P. (1975). Bayesian estimation in unrestricted Factor
analysis: A treatment for Heywood cases. Psychometrika, 40, 4:505-517.

Moustaki, I (2007). Factor analysis and latent structure of categorical and metric
data. Factor Analysis at 100: Historical Developments and Future Directions
(Chapter 14, Eds. Cudeck, R. & MacCallum, R.C.), Lawrence Erlbaum Asso-
ciates, Inc., Mahwah, New Yersey, USA.

Plomin, R., Haworth, C.M.A and Davis, O.S.P. (2009). Common disorders are quan-
titative traits, Nature Reviews Genetics, 10, 872-878.

Puttonen, S., Elovainio, M., Kivimäki, M., Koskinen, T., Pulkki-Råback, L., Viikari,
J.S.A., Raitakari, O.T. and Keltikangas-Järvinen, L. (2008). Temperament,
health-related behaviors, and automatic cardiac regulation: The cardiovascular
risk in young Finns study. Biological Psychology, 78, 2:204-210.

Rasmussen, C.E. (1996). Evaluation of Gaussian processes and other methods for
non-linear regression, PhD thesis, University of Toronto.

Rasmussen, C.E. and Williams C.K.I. (2006). Gaussian Processes for Machine Learn-
ing. The MIT Press, Massachusetts, USA.

Robbins, H. and Monro, S. (1951). A stochastic approximation method. Annals of
Mathematical Statistics, 22, 400-407.

70



Rue, H. and Held, L. (2005) Gaussian Markov Random Fields: Theory and Applica-
tions. Chapman & Hall, Boca Raton, USA.

Tarkkonen, L. and Vehkalahti, K. (2005). Measurement errors in multivariate mea-
surement scales. Journal of Multivariate Analysis, 96, 172-189.

Wu, C.F.J. (1983). On the convergence properties of the EM-algorithm. The Annals
of Statistics, 11, 1:95-103.

Ylvisaker, D. (1987). Special invited paper: Prediction and design. The Annals of
Statistics, 15, 1:1-19.

71


	Introduction
	The behavioral setting
	Mathematical background

	Gaussian random fields
	Stochastic process
	Gaussian process

	Gaussian process regression (GPR)
	Regression
	Regression with a Gaussian process
	Theoretical perspective
	Problem of measurement error

	Measurement model
	Behavioral scales
	Standard statistical model - Factor analysis
	Error variance estimate for behavioral scales

	GPR from latent index variable
	EM, gradient-based, and stochastic estimation methods
	Estimation of the model
	Estimation of Factor analysis model via EM-algorithm
	Estimation of GPR model in noise-free case
	Estimation of GPR model with noisy indices


	Prediction with noisy observations
	Noise incorporating covariance function
	Interpreting the Squared exponential

	Summary and afterword
	Bibliography

